Patients with a hematologic malignancy increasingly prefer to be actively involved in treatment decision-making. Shared decision-making (SDM), a process that supports decision-making in preference-sensitive decisions, fits well with this need. A decision is preference sensitive when well-informed patients considerably differ in their trade-offs between the pros and cons of one option, or if more equal treatment options are available, including no treatment. SDM involves several steps: the first is choice talk, where the professional informs the patient that a decision needs to be made between the various relevant options and that the patient's opinion is important. The second is option talk, where the professional explains the options and their pros and cons. In the third step, preference talk, the professional and the patient discuss the patient's preferences. The professional supports the patient in deliberation. The final step is decision talk, where the professional and patient discuss the patient's decisional role preference, make or defer the decision and discuss possible follow-up.
In the decision-making environment of evidence-based practice, the following three sources of information must be integrated: research evidence of the intervention, clinical expertise, and the patient’s values. In reality, evidence-based practice usually focuses on research evidence (which may be translated into clinical practice guidelines) and clinical expertise without considering the individual patient’s values. The shared decision-making model seems to be helpful in the integration of the individual patient’s values in evidence-based practice. We aim to discuss the relevance of shared decision making in chronic care and to suggest how it can be integrated with evidence-based practice in nursing. We start by describing the following three possible approaches to guide the decision-making process: the paternalistic approach, the informed approach, and the shared decision-making approach. Implementation of shared decision making has gained considerable interest in cases lacking a strong best-treatment recommendation, and when the available treatment options are equivalent to some extent. We discuss that in chronic care it is important to always invite the patient to participate in the decision-making process. We delineate the following six attributes of health care interventions in chronic care that influence the degree of shared decision making: the level of research evidence, the number of available intervention options, the burden of side effects, the impact on lifestyle, the patient group values, and the impact on resources. Furthermore, the patient’s willingness to participate in shared decision making, the clinical expertise of the nurse, and the context in which the decision making takes place affect the shared decision-making process. A knowledgeable and skilled nurse with a positive attitude towards shared decision making – integrated with evidence-based practice – can facilitate the shared decision-making process. We conclude that nurses as well as other health care professionals in chronic care should integrate shared decision making with evidence- based practice to deliver patient-centred care.
Proper decision-making is one of the most important capabilities of an organization. Therefore, it is important to have a clear understanding and overview of the decisions an organization makes. A means to understanding and modeling decisions is the Decision Model and Notation (DMN) standard published by the Object Management Group in 2015. In this standard, it is possible to design and specify how a decision should be taken. However, DMN lacks elements to specify the actors that fulfil different roles in the decision-making process as well as not taking into account the autonomy of machines. In this paper, we re-address and-present our earlier work [1] that focuses on the construction of a framework that takes into account different roles in the decision-making process, and also includes the extent of the autonomy when machines are involved in the decision-making processes. Yet, we extended our previous research with more detailed discussion of the related literature, running cases, and results, which provides a grounded basis from which further research on the governance of (semi) automated decision-making can be conducted. The contributions of this paper are twofold; 1) a framework that combines both autonomy and separation of concerns aspects for decision-making in practice while 2) the proposed theory forms a grounded argument to enrich the current DMN standard.
Developing a framework that integrates Advanced Language Models into the qualitative research process.Qualitative research, vital for understanding complex phenomena, is often limited by labour-intensive data collection, transcription, and analysis processes. This hinders scalability, accessibility, and efficiency in both academic and industry contexts. As a result, insights are often delayed or incomplete, impacting decision-making, policy development, and innovation. The lack of tools to enhance accuracy and reduce human error exacerbates these challenges, particularly for projects requiring large datasets or quick iterations. Addressing these inefficiencies through AI-driven solutions like AIDA can empower researchers, enhance outcomes, and make qualitative research more inclusive, impactful, and efficient.The AIDA project enhances qualitative research by integrating AI technologies to streamline transcription, coding, and analysis processes. This innovation enables researchers to analyse larger datasets with greater efficiency and accuracy, providing faster and more comprehensive insights. By reducing manual effort and human error, AIDA empowers organisations to make informed decisions and implement evidence-based policies more effectively. Its scalability supports diverse societal and industry applications, from healthcare to market research, fostering innovation and addressing complex challenges. Ultimately, AIDA contributes to improving research quality, accessibility, and societal relevance, driving advancements across multiple sectors.
The traffic safety of cyclists is under pressure. The number of fatalities and injuries is increasing, and the number of single-bicycle accidents is on the rise. However, from a traffic safety perspective, the most concerning trend is the growing number of incidents between motorized vehicles and cyclists. In addition to infrastructural solutions, such as more segregated and wider bike lanes, both industry and government are exploring technological developments to better safeguard cyclist safety. One of the technological solutions being considered is the use of C-V2X communication. C-V2X, Cellular Vehicle-to-X, is a technology that enables short-range signal exchanges between road users, informing them of each other's presence. C-V2X can be used, for example, to alert drivers via dedicated in-car information systems about the presence of cyclists on the road (e.g. at crossings). Although the technology and chipsets have been developed, the application of C-V2X to improve cyclist safety has not yet been thoroughly investigated. Therefore, HAN, Gazelle, and ARK Infomotives are researching the impact of C-V2X (on cyclist safety). Using advanced simulations with a digital twin in an urban environment and rural environment, the study will analyze how drivers respond to cyclist presence signals and determine the maximum penetration rate of ‘connected’ cyclists. Based on this, a pilot study will be conducted in a controlled environment on HAN terrain to validate the direction of the simulation results. The project aligns with the Missiegedreven Innovatiebeleid and the KIA Sleuteltechnologieën, specifically within application of digital and information technologies. This proposal aligns with the innovation domain of Semiconductor Technologies by applying advanced sensor and digital connectivity solutions to enhance cyclist safety. The project fits within the theme of Sleuteltechnologieën en Duurzame Materialen of the strategic research agenda of the VH by utilizing digital connectivity, sensor fusion, and data-driven decision-making for safer mobility solutions.
The energy transition is a highly complex technical and societal challenge, coping with e.g. existing ownership situations, intrusive retrofit measures, slow decision-making processes and uneven value distribution. Large scale retrofitting activities insulating multiple buildings at once is urgently needed to reach the climate targets but the decision-making of retrofitting in buildings with shared ownership is challenging. Each owner is accountable for his own energy bill (and footprint), giving a limited action scope. This has led to a fragmented response to the energy retrofitting challenge with negligible levels of building energy efficiency improvements conducted by multiple actors. Aggregating the energy design process on a building level would allow more systemic decisions to happen and offer the access to alternative types of funding for owners. “Collect Your Retrofits” intends to design a generic and collective retrofit approach in the challenging context of monumental areas. As there are no standardised approaches to conduct historical building energy retrofits, solutions are tailor-made, making the process expensive and unattractive for owners. The project will develop this approach under real conditions of two communities: a self-organised “woongroep” and a “VvE” in the historic centre of Amsterdam. Retrofit designs will be identified based on energy performance, carbon emissions, comfort and costs so that a prioritisation strategy can be drawn. Instead of each owner investing into their own energy retrofitting, the neighbourhood will invest into the most impactful measures and ensure that the generated economic value is retained locally in order to make further sustainable investments and thus accelerating the transition of the area to a CO2-neutral environment.