Posterpresentatie die een introductie geeft in het onderzoek: "Hoe kan ontwikkelingsgerichte evaluatie een bijdrage leveren aan verduurzaming van DBE waarbij recht gedaan wordt aan kenmerkende aspecten van DBE als onderwijsconcept."
DOCUMENT
circular economy as a system change is gaining more attention, reusing materials and products is part of this, but an effective method for repurposing seems to be missing. Repurpose is a strategy which uses a discarded product or its parts in a new product with a different function. Literature on specific design methods for 'repurposing’ is limited and current design methods do not specifically address repurpose driven design. This paper aims to contribute to the literature on repurpose as a circularity strategy by evaluating repurpose driven design processes which are deployed in practice and evaluate to what extend existing design methods are suited for repurpose driven design. Building on a multiple case study two main design approaches are identified. First, a goal-oriented approach in which a client commissions the design studio. Second, a resource-oriented approach in which a discarded product or its components is the starting point of a design process initiated by the designers. Although both approaches follow a more or less standard design process, each intervenes with repurpose specific input at different phases in the design process, depending on the role of the designer. Results show that in order to be able to deal with the inconsistencies of discarded products, specific repurpose-related tools are required for an efficient and effective repurpose driven design process. Future research should address these issues in order to develop comprehensive and practical tools that accommodate the two repurpose driven design approaches.
DOCUMENT
The use of games as interventions in the domain of health care is of-ten paired with evaluating the effects in randomized clinical trials. The iterative design and development process of games usually also involves an evaluation phase, aimed at identifying improvements for subsequent iterations. Since game design theory and theories from associated fields provide no unified framework for designing successful interventions, interpreting evaluation results and for-mulating improvements is complicated. This case study explores an approach of monitoring design decisions and corresponding theories throughout the design and development cycle, allowing evaluation results to be attributed to design decisions. Such an approach may allow the game design and development pro-cess to iterate the game more efficiently towards use in practice.3rd European Conference on Gaming and Playful Interaction in Health Care.
DOCUMENT
Size measurement plays an essential role for micro-/nanoparticle characterization and property evaluation. Due to high costs, complex operation or resolution limit, conventional characterization techniques cannot satisfy the growing demand of routine size measurements in various industry sectors and research departments, e.g., pharmaceuticals, nanomaterials and food industry etc. Together with start-up SeeNano and other partners, we will develop a portable compact device to measure particle size based on particle-impact electrochemical sensing technology. The main task in this project is to extend the measurement range for particles with diameters ranging from 20 nm to 20 um and to validate this technology with realistic samples from various application areas. In this project a new electrode chip will be designed and fabricated. It will result in a workable prototype including new UMEs (ultra-micro electrode), showing that particle sizing can be achieved on a compact portable device with full measuring range. Following experimental testing with calibrated particles, a reliable calibration model will be built up for full range measurement. In a further step, samples from partners or potential customers will be tested on the device to evaluate the application feasibility. The results will be validated by high-resolution and mainstream sizing techniques such as scanning electron microscopy (SEM), dynamic light scattering (DLS) and Coulter counter.
Renewable energy, particularly offshore wind turbines, plays a crucial role in the Netherlands' and EU energy-transition-strategies under the EU Green Deal. The Dutch government aims to establish 75GW offshore wind capacity by 2050. However, the sector faces human and technological challenges, including a shortage of maintenance personnel, limited operational windows due to weather, and complex, costly logistics with minimal error tolerance. Cutting-edge robotic technologies, especially intelligent drones, offer solutions to these challenges. Smaller drones have gained prominence through applications identifying, detecting, or applying tools to various issues. Interest is growing in collaborative drones with high adaptability, safety, and cost-effectiveness. The central practical question from network partners and other stakeholders is: “How can we deploy multiple cooperative drones for maintenance of wind turbines, enhancing productivity and supporting a viable business model for related services?” This is reflected in the main research question: "Which drone technologies need to be developed to enable collaborative maintenance of offshore wind turbines using multiple smaller drones, and how can an innovative business model be established for these services? In collaboration with public and private partners, Saxion, Hanze, and RUG will research the development of these collaborative drones and investigate the technology’s potential. The research follows a Design Science Research methodology, emphasizing solution-oriented applied research, iterative development, and rigorous evaluation. Key technological building blocks to be developed: • Morphing drones, • Intelligent mechatronic tools, • Learning-based adaptive interaction controllers and collaborations. To facilitate the sustainable industrial uptake of the developed technologies, appropriate sustainable business models for these technologies and services will be explored. The project will benefit partners by enhancing their operations and business. It will contribute to renewing higher professional education and may lead to the creation of spin-offs/spinouts which bring this innovative technology to the society, reinforcing the Netherlands' position as a leading knowledge economy.
In the last decade, the automotive industry has seen significant advancements in technology (Advanced Driver Assistance Systems (ADAS) and autonomous vehicles) that presents the opportunity to improve traffic safety, efficiency, and comfort. However, the lack of drivers’ knowledge (such as risks, benefits, capabilities, limitations, and components) and confusion (i.e., multiple systems that have similar but not identical functions with different names) concerning the vehicle technology still prevails and thus, limiting the safety potential. The usual sources (such as the owner’s manual, instructions from a sales representative, online forums, and post-purchase training) do not provide adequate and sustainable knowledge to drivers concerning ADAS. Additionally, existing driving training and examinations focus mainly on unassisted driving and are practically unchanged for 30 years. Therefore, where and how drivers should obtain the necessary skills and knowledge for safely and effectively using ADAS? The proposed KIEM project AMIGO aims to create a training framework for learner drivers by combining classroom, online/virtual, and on-the-road training modules for imparting adequate knowledge and skills (such as risk assessment, handling in safety-critical and take-over transitions, and self-evaluation). AMIGO will also develop an assessment procedure to evaluate the impact of ADAS training on drivers’ skills and knowledge by defining key performance indicators (KPIs) using in-vehicle data, eye-tracking data, and subjective measures. For practical reasons, AMIGO will focus on either lane-keeping assistance (LKA) or adaptive cruise control (ACC) for framework development and testing, depending on the system availability. The insights obtained from this project will serve as a foundation for a subsequent research project, which will expand the AMIGO framework to other ADAS systems (e.g., mandatory ADAS systems in new cars from 2020 onwards) and specific driver target groups, such as the elderly and novice.