In this paper we explore the influence of the physical and social environment (the design space) son the formation of shared understanding in multidisciplinary design teams. We concentrate on the creative design meeting as a microenvironment for studying processes of design communication. Our applied research context entails the design of mixed physical–digital interactive systems supporting design meetings. Informed by theories of embodiment that have recently gained interest in cognitive science, we focus on the role of interactive “traces,” representational artifacts both created and used by participants as scaffolds for creating shared understanding. Our research through design approach resulted in two prototypes that form two concrete proposals of how the environment may scaffold shared understanding in design meetings. In several user studies we observed users working with our systems in natural contexts. Our analysis reveals how an ensemble of ongoing social as well as physical interactions, scaffolded by the interactive environment, grounds the formation of shared understanding in teams. We discuss implications for designing collaborative tools and for design communication theory in general.
MULTIFILE
Introduction: In March 2014, the New South Wales (NSW) Government (Australia) announced the NSW Integrated Care Strategy. In response, a family-centred, population-based, integrated care initiative for vulnerable families and their children in Sydney, Australia was developed. The initiative was called Healthy Homes and Neighbourhoods. A realist translational social epidemiology programme of research and collaborative design is at the foundation of its evaluation. Theory and Method: The UK Medical Research Council (MRC) Framework for evaluating complex health interventions was adapted. This has four components, namely 1) development, 2) feasibility/piloting, 3) evaluation and 4) implementation. We adapted the Framework to include: critical realist, theory driven, and continuous improvement approaches. The modified Framework underpins this research and evaluation protocol for Healthy Homes and Neighbourhoods. Discussion: The NSW Health Monitoring and Evaluation Framework did not make provisions for assessment of the programme layers of context, or the effect of programme mechanism at each level. We therefore developed a multilevel approach that uses mixed-method research to examine not only outcomes, but also what is working for whom and why.
LINK
Living labs are complex multi-stakeholder collaborations that often employ a usercentred and design-driven methodology to foster innovation. Conventional management tools fall short in evaluating them. However, some methods and tools dedicated to living labs' special characteristics and goals have already been developed. Most of them are still in their testing phase. Those tools are not easily accessible and can only be found in extensive research reports, which are difficult to dissect. Therefore, this paper reviews seven evaluation methods and tools specially developed for living labs. Each section of this paper is structured in the following manner: tool’s introduction (1), who uses the tool (2), and how it should be used (3). While the first set of tools, namely “ENoLL 20 Indicators”, “SISCODE Self-assessment”, and “SCIROCCO Exchange Tool” assess a living lab as an organisation and are diving deeper into the organisational activities and the complex context, the second set of methods and tools, “FormIT” and “Living Lab Markers”, evaluate living labs’ methodologies: the process they use to come to innovations. The paper's final section presents “CheRRIes Monitoring and Evaluation Tool” and “TALIA Indicator for Benchmarking Service for Regions”, which assess the regional impact made by living labs. As every living lab is different regarding its maturity (as an organisation and in its methodology) and the scope of impact it wants to make, the most crucial decision when evaluating is to determine the focus of the assessment. This overview allows for a first orientation on worked-out methods and on possible indicators to use. It also concludes that the existing tools are quite managerial in their method and aesthetics and calls for designers and social scientists to develop more playful, engaging and (possibly) learning-oriented tools to evaluate living labs in the future. LinkedIn: https://www.linkedin.com/in/overdiek12345/ https://www.linkedin.com/in/mari-genova-17a727196/?originalSubdomain=nl
Size measurement plays an essential role for micro-/nanoparticle characterization and property evaluation. Due to high costs, complex operation or resolution limit, conventional characterization techniques cannot satisfy the growing demand of routine size measurements in various industry sectors and research departments, e.g., pharmaceuticals, nanomaterials and food industry etc. Together with start-up SeeNano and other partners, we will develop a portable compact device to measure particle size based on particle-impact electrochemical sensing technology. The main task in this project is to extend the measurement range for particles with diameters ranging from 20 nm to 20 um and to validate this technology with realistic samples from various application areas. In this project a new electrode chip will be designed and fabricated. It will result in a workable prototype including new UMEs (ultra-micro electrode), showing that particle sizing can be achieved on a compact portable device with full measuring range. Following experimental testing with calibrated particles, a reliable calibration model will be built up for full range measurement. In a further step, samples from partners or potential customers will be tested on the device to evaluate the application feasibility. The results will be validated by high-resolution and mainstream sizing techniques such as scanning electron microscopy (SEM), dynamic light scattering (DLS) and Coulter counter.
In the last decade, the automotive industry has seen significant advancements in technology (Advanced Driver Assistance Systems (ADAS) and autonomous vehicles) that presents the opportunity to improve traffic safety, efficiency, and comfort. However, the lack of drivers’ knowledge (such as risks, benefits, capabilities, limitations, and components) and confusion (i.e., multiple systems that have similar but not identical functions with different names) concerning the vehicle technology still prevails and thus, limiting the safety potential. The usual sources (such as the owner’s manual, instructions from a sales representative, online forums, and post-purchase training) do not provide adequate and sustainable knowledge to drivers concerning ADAS. Additionally, existing driving training and examinations focus mainly on unassisted driving and are practically unchanged for 30 years. Therefore, where and how drivers should obtain the necessary skills and knowledge for safely and effectively using ADAS? The proposed KIEM project AMIGO aims to create a training framework for learner drivers by combining classroom, online/virtual, and on-the-road training modules for imparting adequate knowledge and skills (such as risk assessment, handling in safety-critical and take-over transitions, and self-evaluation). AMIGO will also develop an assessment procedure to evaluate the impact of ADAS training on drivers’ skills and knowledge by defining key performance indicators (KPIs) using in-vehicle data, eye-tracking data, and subjective measures. For practical reasons, AMIGO will focus on either lane-keeping assistance (LKA) or adaptive cruise control (ACC) for framework development and testing, depending on the system availability. The insights obtained from this project will serve as a foundation for a subsequent research project, which will expand the AMIGO framework to other ADAS systems (e.g., mandatory ADAS systems in new cars from 2020 onwards) and specific driver target groups, such as the elderly and novice.
This project develops a European network for transdisciplinary innovation in artistic engagement as a catalyst for societal transformation, focusing on immersive art. It responds to the professionals in the field’s call for research into immersive art’s unique capacity to ‘move’ people through its multisensory, technosocial qualities towards collective change. The project brings together experts leading state-of-the-art research and practice in related fields with an aim to develop trajectories for artistic, methodological, and conceptual innovation for societal transformation. The nascent field of immersive art, including its potential impact on society, has been identified as a priority research area on all local-to-EU levels, but often suffers from the common (mis)perception as being technological spectacle prioritising entertainment values. Many practitioners create immersive art to enable novel forms of creative engagement to address societal issues and enact change, but have difficulty gaining recognition and support for this endeavour. A critical challenge is the lack of knowledge about how their predominantly sensuous and aesthetic experience actually lead to collective change, which remains unrecognised in the current systems of impact evaluation predicated on quantitative analysis. Recent psychological insights on awe as a profoundly transformative emotion signals a possibility to address this challenge, offering a new way to make sense of the transformational effect of directly interacting with such affective qualities of immersive art. In parallel, there is a renewed interest in the practice of cultural mediation, which brings together different stakeholders to facilitate negotiation towards collective change in diverse domains of civic life, often through creative engagements. Our project forms strategic grounds for transdisciplinary research at the intersection between these two developments. We bring together experts in immersive art, psychology, cultural mediation, digital humanities, and design across Europe to explore: How can awe-experiences be enacted in immersive art and be extended towards societal transformation?