At this moment, charging your electric vehicle is common good, however smart charging is still a novelty in the developing phase with many unknowns. A smart charging system monitors, manages and restricts the charging process to optimize energy consumption. The need for, and advantages of smart charging electric vehicles are clear cut from the perspective of the government, energy suppliers and sustainability goals. But what about the advantages and disadvantages for the people who drive electric cars? What opportunities are there to support the goals of the user to make smart charging desirable for them? By means of qualitative Co-design methods the underlying motives of early adaptors for joining a smart charging service were uncovered. This was done by first sensitizing the user about their current and past encounters with smart charging to make them more aware of their everyday experiences. This was followed by another generative method, journey mapping and in-depth interviews to uncover the core values that drove them to participate in a smart charging system. Finally, during two co-design sessions, the participants formed groups in which they were challenged to design the future of smart charging guided by their core values. The three main findings are as follows. Firstly, participants are looking for ways to make their sustainable behaviour visible and measurable for themselves. For example, the money they saved by using the smart charging system was often used as a scoreboard, more than it was about theactual money. Secondly, they were more willing to participate in smart charging and discharging (sending energy from their vehicle back to the grid) if it had a direct positive effect on someone close to them. For example, a retiree stated that he was more than willing to share the energy of his car with a neighbouring family in which both young parents work, making them unable to charge their vehicles at times when renewable energy is available in abundance. The third and last finding is interrelated with this, it is about setting the right example. The early adopters want to show people close to them that they are making an effort to do the right thing. This is known as the law of proximity and is well illustrated by a participant that bought a second-hand, first-generation Nissan Leaf with a range of just 80 km in the summer and even less in winter. It isn’t about buying the best or most convenient car but about showing the children that sometimes it takes effort to do the right thing. These results suggest that there are clear opportunities for suppliers of smart EV charging services to make it more desirable for users, with other incentives than the now commonly used method of saving money. The main takeaway is that early adopters have a desire for their sustainable behaviour to be more visible and tangible for themselves and their social environment. The results have been translated into preliminary design proposals in which the law of proximity is applied.
The purpose of the research was the development of a questionnaire that can measure the behaviour of groups of students (for instance departments' cohorts) in Personal Information Management (PIM). Variables for the questionnaire were derived from the international literature on PIM. The questionnaire has been tested out on 79 students (last year before graduation) from four different departments of the Academy of ICT&Media at The Hague University of Applied Sciences. The students' responses were checked on consistency, item non response, desirability bias and information value of the results. All these criteria indicated that the questionnaire is an adequate tool for the assessment of PIM at an institutional level. The results that have been found for the four departments have not yet been discussed with the managers of the Academy and those of the individual departments. [De hier gepubliceerde versie is het 'accepted paper' van het origineel dat is gepubliceerd op www.springerlink.com . De officiële publicatie kan worden gedownload op http://www.springerlink.com/content/n0h3k71u85024xnt/]
Knowledge valorisation is the transfer of knowledge from one party to another for economic benefit. The concept of valorisation is based on the underlying metaphor of KNOWLEDGE AS A THING. It is the same metaphor that makes it possible to talk about the value of knowledge. If knowledge is like a ‘thing’, then that ‘ thing’ must have a specific value. Value can be defined as the degree of usefulness or desirability of something, especially in comparison with other things, and is by definition subjective. Value is in the eye of the beholder. Any valuation method therefore needs to take into account this subjective nature by deliberately choosing the appropriate ‘standard of value’ (value to whom?) and ‘premise of value’ (value under what circumstances?). There are three ways to determine the value of something of which financial valuation is the most used. In turn financial valuation can be done using a cost approach, a market approach or an income approach. In most cases the income approach is the most appropriate. However, this approach requires a number of assumptions to be made; most of which are impossible to validate. The formulas that are used in the process can be intimidating to non-experts with the danger of disguising the inherent subjective and speculative nature of any valuation of knowledge as a ‘thing’.
Despite their various appealing features, drones also have some undesirable side-effects. One of them is the psychoacoustic effect that originates from their buzzing noise that causes significant noise pollutions. This has an effect on nature (animals run away) and on humans (noise nuisance and thus stress and health problems). In addition, these buzzing noises contribute to alerting criminals when low-flying drones are deployed for safety and security applications. Therefore, there is an urgent demand from SMEs for practical knowledge and technologies that make existing drones silent, which is the main focus of this project. This project contributes directly to the KET Digital Innovations\Robotics and multiple themes of the top sectors: Agriculture, Water and Food, Health & Care and Safety. The main objective of this project is: Investigate the desirability and possibilities of extremely silent drone technologies for agriculture, public space and safety This is an innovative project and there exist no such drone technology that attempts to reduce the noises coming from drones. The knowledge within this project will be converted into the first proof-of-concepts that makes the technology the first Minimum Viable Product suitable for market evaluations. The partners of this project include WhisperUAV, which has designed the first concept of a silent drone. As a fiber-reinforced 3D composite component printer, Fiberneering plays a crucial role in the (further) development of silent drone technologies into testable prototypes. Sorama is involved as an expert company in the context of mapping the sound fields in and around drones. The University of Twente is involved as a consultant and co-developer, and Research group of mechatronics at Saxion is involved as concept developer, system and user requirement verifier and validator. As an unmanned systems innovation cluster, Space53 will be involved as innovation and networking consultant.
While several governmental and research efforts are set upon mobility-as-a-service (MaaS), most of them are driven by individual travel behavior and potential usage. Scholars argue that this is a too narrow perspective when evaluating government projects because choices individuals make in a private setting might not accurately reflect their preferences towards public policy. Participatory Value Evaluation (PVE) is a novel evaluation framework specifically designed to alleviate this issue by analyzing preferences on the allocation of public budgets. Thus, based on PVE, this project aims at assessing different features of MaaS-services (e.g. enhancing mobility of the elderly and the poor, complementing public transport, etc.) from a social desirability perspective and compare them with investments in alternative social projects. Specifically, it aims at establishing the citizen value of MaaS as compared to social investments in green/recreational areas or transport infrastructure (e.g. bike or bus lanes), and eliciting trade-offs between different features of them. The project includes the selection of different investment projects (and their features) that are politically relevant in Rotterdam. It also includes a qualitative assessment on the way individuals evaluate different social projects and their features and a quantitative assessment based on choice models that allow eliciting trade-offs between different attributes and projects. Finally, policy recommendations are provided based on these results. They allow conceiving investments projects to maximize the societal benefits as well as to construct optimal investment portfolios. This information is to be used as a complement of the evaluation of projects on the basis of individual preferences.
Een duurzaam energiesysteem op wijkniveau: met Smart Solar Charging wordt lokaal opgewekte zonne-energie in (deel)auto’s opgeslagen via een slim en dynamisch systeem (Vehicle2Grid). Wij onderzoeken de wenselijkheid van deze dienst voor gebruikers.Doel We onderzoeken wat de beste ervaringen zijn van de gebruikers van het energiesysteem Smart Solar Charging. Een Smart Solar Charging-systeem werkt pas bij een (deel)autosysteem van minimaal honderd auto’s. Dit kan een goede oplossing zijn voor het mobiliteitsprobleem in de steden. Maar wat is het voordeel voor de gebruikers? Wat verandert er in hun leven en hoe reageren zij hierop? Waar zijn zij bang voor? Wat verlangen ze? Zoals hierboven genoemd zijn dit belangrijke aspecten om ervoor te zorgen dat het nieuwe systeem daadwerkelijk kan slagen. Hoe ziet de ervaringswereld van mogelijke betrokkenen eruit? Het antwoord op deze vraag zal worden meegenomen in de ontwikkeling van de diensten. Resultaten Dit onderzoek loopt. Na afloop vind je hier een samenvatting van de resultaten. Op de projectwebsite lees je meer over Smart Solar Charging Looptijd 01 april 2017 - 01 april 2021 Aanpak Het lectoraat Co-Design van Hogeschool Utrecht doet onderzoek naar optimale gebruikersinteracties van de beoogde diensten. In het Design Innovation model van Ideo zijn drie elementen die de basis voor innovatie zijn. Waar andere partijen in het project zich met name richten op de zakelijke en technische kanten van het verhaal, onderzoekt het lectoraat Co-Design de human en dus desirability-kant, vanzelfsprekend in verbinding met de twee andere elementen.