Expectations are high for digital technologies to address sustainability related challenges. While research into such applications and the twin transformation is growing rapidly, insights in the actual daily practices of digital sustainability within organizations is lacking. This is problematic as the contributions of digital tools to sustainability goals gain shape in organizational practices. To bridge this gap, we develop a theoretical perspective on digital sustainability practices based on practice theory, with an emphasis on the concept of sociomateriality. We argue that connecting meanings related to sustainability with digital technologies is essential to establish beneficial practices. Next, we contend that the meaning of sustainability is contextspecific, which calls for a local meaning making process. Based on our theoretical exploration we develop an empirical research agenda.
MULTIFILE
In this work, the concept of an Artificial Intelligence-based (AI) Digital Twin (DT) of an aircraft system is introduced, with the goal to improve the corresponding MRO Operations. More specifically, the current study aims to obtaining knowledge on the optimal placement of sensors in an ideal Power Electronics Cooling System (PECS) of a modern airliner, aiming to improve input data as a basis for an AI-based DT. The three main fluid parameters to be measured directly or indirectly at various physical locations at the PECS are mass flow rate, temperature and static pressure. The physics-based model can then be combined with a Machine Learning (ML) model, such as a Random Forest (RF), with a multitude of decision trees. Following, the AI system determines whether the PECS operations is considered normal, aiming to optimize the performance of the system and to maximize the Useful Remaining Life (URL). The suggested AI-DT approach is based both on data-driven and physics-based models, an approach which results in increased reliability and availability, reducing possible Aircraft on Ground (AOG) events. Subsequently, the enhanced prediction capability results in the optimization of the maintenance processes and in reduced operational costs.
DOCUMENT
Human Digital Twins are an emerging type of Digital Twin used in healthcare to provide personalized support. Following this trend, we intend to elevate our virtual fitness coach, a coaching platform using wearable data on physical activity, to the level of a personalized Human Digital Twin. Preliminary investigations revealed a significant difference in performance, as measured by prediction accuracy and F1-score, between the optimal choice of machine learning algorithms for generalized and personalized processing of the available data. Based on these findings, this survey aims to establish the state of the art in the selection and application of machine learning algorithms in Human Digital Twin applications in healthcare. The survey reveals that, unlike general machine learning applications, there is a limited body of literature on optimization and the application of meta-learning in personalized Human Digital Twin solutions. As a conclusion, we provide direction for further research, formulated in the following research question: how can the optimization of human data feature engineering and personalized model selection be achieved in Human Digital Twins and can techniques such as meta-learning be of use in this context?
DOCUMENT
Hoe kan Digital Twin-technologie de Nederlandse maakindustrie helpen om efficiënt energiezuinig en circulair te werken? Met praktijkgericht onderzoek helpt het lectoraat Industriële Digital Twins van de Hogeschool van Amsterdam (HvA) bedrijven om CO2-neutraal te worden en daarmee internaal competitief te blijven.
DOCUMENT
Digital Twins of the Ocean (DTO) are a rapidly emerging topic that has attracted significant interest from scientists in recent years. The initiative, strongly driven by the EU, aims to create a digital replica of the ocean to better understand and manage marine environments. The Iliad project, funded under the EU Green Deal call, is developing a framework to support multiple interoperable DTO using a federated systems-of-systems approach across various fields of applications and ocean areas, called pilots. This paper presents the results of a Water Quality DTO pilot located in the Trondheim fjord in Norway. This paper details the building blocks of DTO, specific to this environmental monitoring pilot. A crucial aspect of any DTO is data, which can be sourced internally, externally, or through a hybrid approach utilizing both. To realistically twin ocean processes, the Water Quality pilot acquires data from both surface and benthic observatories, as well as from mobile sensor platforms for on-demand data collection. Data ingested into an InfluxDB are made available to users via an API or an interface for interacting with the DTO and setting up alerts or events to support ’what-if’ scenarios. Grafana, an interactive visualization application, is used to visualize and interact with not only time-series data but also more complex data such as video streams, maps, and embedded applications. An additional visualization approach leverages game technology based on Unity and Cesium, utilizing their advanced rendering capabilities and physical computations to integrate and dynamically render real-time data from the pilot and diverse sources. This paper includes two case studies that illustrate the use of particle sensors to detect microplastics and monitor algae blooms in the fjord. Numerical models for particle fate and transport, OpenDrift and DREAM, are used to forecast the evolution of these events, simulating the distribution of observed plankton and microplastics during the forecasting period.
DOCUMENT
DOCUMENT
Digital Twins of the Ocean (DTOs) are increasingly used in Maritime Spatial Planning (MSP), yet most remain limited to 2D representations and offer minimal stakeholder interactivity. These limitations reduce their effectiveness in capturing complex socio-ecological-technical dynamics and supporting exploratory what-if scenario planning in a 3D or 4D ocean space. This paper presents Immersive Ocean, a novel Virtual Twin platform developed within EU-ILIAD DTO initiative. Built with game engine and VR technologies, it supports procedural 3D world generation and interactive exploration in both desktop and immersive VR modes. Systematic performance validation demonstrated stable frame rates across both PC and VR platforms. Initial user evaluations (n=22) report high usability and engagement but also suggest areas for improvement in UI clarity and ecological model representation. These initial findings position Immersive Ocean as a promising Virtual Twin solution for an immersive, interactive, and data-integrated approach to MSP and ocean governance. Immersive Ocean is now being piloted with stakeholders in real-world MSP scenarios, including offshore wind farm planning.
DOCUMENT
Presentation discussing how simulation/serious game research and development can change in the age of digital twin technologies.
DOCUMENT