Nowadays, digital tools for mathematics education are sophisticated and widely available. These tools offer important opportunities, but also come with constraints. Some tools are hard to tailor by teachers, educational designers and researchers; their functionality has to be taken for granted. Other tools offer many possible educational applications, which require didactical choices. In both cases, one may experience a tension between a teacher’s didactical goals and the tool’s affordances. From the perspective of Realistic Mathematics Education (RME), this challenge concerns both guided reinvention and didactical phenomenology. In this chapter, this dialectic relationship will be addressed through the description of two particular cases of using digital tools in Dutch mathematics education: the introduction of the graphing calculator (GC), and the evolution of the online Digital Mathematics Environment (DME). From these two case descriptions, my conclusion is that students need to develop new techniques for using digital tools; techniques that interact with conceptual understanding. For teachers, it is important to be able to tailor the digital tool to their didactical intentions. From the perspective of RME, I conclude that its match with using digital technology is not self-evident. Guided reinvention may be challenged by the rigid character of the tools, and the phenomena that form the point of departure of the learning of mathematics may change in a technology-rich classroom.
LINK
Dit rapport beschrijft uitvoerig een onderzoek naar mogelijkheden en opbrengsten van het inzetten van Professionele Simulatie Ontwerpsoftware in de bovenbouw van de basisschool. Deze casestudie is opgebouwd in vijf fasen waarvan de laatste fase antwoord geeft op de kracht van dit instrument voor het onderwijs. De studie mikt zowel op de didactische inzetbaarheid door de leerkracht als de bijdrage aan het ontwikkelen van denkvaardigheden bij leerlingen. De studie past in het onderzoek naar Mindtools en DME's en is grensverleggend in vergelijking tot gangbaar gebruik van ICT. De gebruikte software is van een hoog abstractieniveau maar blijkt door leerlingen al goed te gebruiken om hun talenten aan te spreken. In de eindconclusies worden perspectiefvolle resultaten genoemd. In de rapportage wordt ook geanticipeerd op verdere ontwikkelingen. Tijdens de casestudie zijn immers aanwijzingen gevonden dat leerlingen zeer geboeid kunnen zijn door het gebruik, dat ze sterke cognitieve redenatiepatronen kunnen opbouwen, analytische vaardigheden toepassen, dat ze uitvoerige kritische discussies met elkaar aangaan enz. Met andere woorden een dergelijk pakket zet leerlingen bij de juiste instrumentatie en begeleiding wel aan tot hoger orde denken. De abstracties van een dergelijk pakket gaat sommige leerlingen goed af. Ze vinden uiteindelijk de 3D weergave wel de kers op de appelmoes. Inzetten van dit soort software kan zeker aangemerkt worden als onderwijs inhoudelijk transitief. Het is interessant om t.z.t de diverse video-opnames uitvoeriger te analyseren op zowel de cognitieve als onderwijskundige opbrengsten. In de bijlagen zijn ontwikkelde ondersteunende materialen en resultaten van leerlingen opgenomen.
This study investigates what pupils aged 10-12 can learn from working with robots, assuming that understanding robotics is a sign of technological literacy. We conducted cognitive and conceptual analysis to develop a frame of reference for determining pupils' understanding of robotics. Four perspectives were distinguished with increasing sophistication; psychological, technological, function, and controlled system. Using Lego Mindstorms NXT robots, as an example of a Direct Manipulation Environment, we developed and conducted a lesson plan to investigate pupils' reasoning patterns. There is ample evidence that pupils have little difficulty in understanding that robots are man-made technological and functional artifacts. Pupils' understanding of the controlled system concept, more specifically the complex sense-reason-act loop that is characteristic of robotics, can be fostered by means of problem solving tasks. The results are discussed with respect to pupils' developing technological literacy and the possibilities for teaching and learning in primary education.
LINK