This paper aims to analyze the behavior of experimentally tested unreinforced masonry walls subjected to in-plane loading. Monotonic load analyses are conducted using FEM and AEM modeling approaches. The models presented here are based on the assumption of both unit and mortar joints modeled as solid elements, which behave nonlinearly. Therefore, the damages occur along the mortar and brick in the analyses. The FEM analysis is carried out by using LS-DYNA, and the AEM analysis is carried out by using ELS (Extreme Loading for Structures). Experimental studies of a masonry wall in-plane loading conditions are used for verification against numerical models. Analysis of the tests performed on masonry shear walls by Raijmakers and Vermeltfoort [1] within the CUR [2] project is carried out. The presented analyses methods can be applied to other unit and mortar compositions. Computational results from this study provide a monotonic load-deformation curve, which then is compared to the envelope of the horizontal load-deformation curves that are experimentally obtained. The agreement of each method with the experimental results, in terms of strength, stiffness and ductility, as well as the predicted damage mechanisms, are discussed.
DOCUMENT
Groningen gas field is the largest on-land gas resource in the world and is beingexploited since 1963. There are damaging earthquakes, the largest of which was 3.6 magnitude. The recursive induced earthquakes are often blamed for triggering the structural damages in thousands of houses in the area. A damage claim procedure takes place after each significantly felt earthquake. The liability of the exploiting company is related to the damages and the engineering firms and experts are asked to correlate the claimed damages with a past earthquake. Structures in the region present high vulnerabilities to the lateral forces, soilproperties are quite unfavourable for seismic resistance, and structural damages are present even without earthquakes. This situation creates a dispute area where one can claim that most structures in the region were already damaged because of the fact that the soil is soft, the ground water table oscillates, and structures are vulnerable to external conditions anyhow and deteriorate in time, which can be the main cause of such structural damages. This ambiguity of damage vs earthquake correlation is one of the main sources of the public unrest in the area up until today. This study presents the perspective of people in the region in terms of liveability and the social acceptance of earthquakes in their lives. An attempt has been made to translate these social effects and expectations into structural performance metrics for ordinary houses in the region. A new seismic design and assessment approach, called Comfort Level Earthquake (CLE) has been proposed.
DOCUMENT