KLM is downsizing the full-freight cargo fleet in Schiphol Airport, for that reason it is important for the company and the airport to explore the consequences of moving the cargo transported by the full freighters into the bellies of the passenger flights. The consequences of this action in terms of capacity and requirements are still unknown. The current study illustrates how to analyse the uncertainty present in the system for identifying the limitations and potential consequences of the reduction of full freighter fleet. The options we identify for coping with the current demand is by adjusting their load factors or increase the number of flights. The current model includes the airside operation of the airport, the truck movements and the traffic that arrives at Schiphol which allows addressing the impact of uncertainties of the operation as well as the limitations and potential problems of the phasing-out action.
Recently KLM has revealed the plan to downsize the full-freight cargo fleet in Schiphol Airport, for that reason it is important for the company and the airport to explore the consequences of moving the cargo transported by the full freighters into the bellies of the passenger flights. The consequences of this action in terms of capacity and requirements are still unknown for the stakeholders. The current study illustrates that once the freighters are phased out, the commercial traffic needs to adjust mainly their load factors in order to absorb the cargo that was previously transported by the full freighters. The current model is a version that includes the airside operation of the airport and also the vehicle movement which allows addressing the uncertainties of the operation as well as the limitations and potential problems of the phasing-out action.
In deze podcast, in de serie "NHL Stenden onderzoekt", gaat host Marjan Teunissen het gesprek aan met Jolanda Tuinstra (lector Sociale Kwaliteit NHL Stenden), Nina Velden (student NHL Stenden) en oud-huisarts van Appelscha Herman Hoekstra over de bloeizone Appelscha. De Bloeizone Appelscha is geïnspireerd op de internationale Blue Zones, regio's waar mensen gezonder en langer leven dankzij factoren zoals voeding, beweging en sociale verbondenheid. De werkgroep Bloeizone Appelscha, die bestaat uit gemotiveerde mensen met uiteenlopende achtergronden, heeft de ambitie om de gezondheid en het gemeenschapsgevoel in Appelscha te versterken. Samen met het Atelier Sociaal Domein van NHL Stenden Hogeschool en de gemeente Ooststellingwerf hebben studenten en lokale partners actief bijgedragen aan dit doel.
LINK
Electrohydrodynamic Atomization (EHDA), also known as Electrospray (ES), is a technology which uses strong electric fields to manipulate liquid atomization. Among many other areas, electrospray is currently used as an important tool for biomedical applications (droplet encapsulation), water technology (thermal desalination and metal recovery) and material sciences (nanofibers and nano spheres fabrication, metal recovery, selective membranes and batteries). A complete review about the particularities of this technology and its applications was recently published in a special edition of the Journal of Aerosol Sciences [1]. Even though EHDA is already applied in many different industrial processes, there are not many controlling tools commercially available which can be used to remotely operate the system as well as identify some spray characteristics, e.g. droplet size, operational mode, droplet production ratio. The AECTion project proposes the development of an innovative controlling system based on the electrospray current, signal processing & control and artificial intelligence to build a non-visual tool to control and characterize EHDA processes.
In 2021, Citython editions were held for the European cities of Eindhoven (Netherlands), Bilbao and Barcelona (Spain), Hamburg (Germany), and Lublin (Poland). Within this project, BUAS contributed to the organization of CITYTHON Eindhoven in cooperation with CARNET (an initiative by CIT UPC) and City of Eindhoven – an event which gives young talent the opportunity to work with mentors and experts for the development of innovative urban solutions. Participants of CITYTHON Eindhoven worked on three challenges:- Traffic safety in school zones - Travel to the campus- Make the city healthy The event took place between 18 May and 2 June 2021 with various experts, for example from ASML, City of Eindhoven and University of Amsterdam, giving inspirational talks and mentoring students throughout the ideation and solutions development process. The teams presented their solutions during the Dutch Technology Week and the winners were announced by Monique List-de Roos (Alderman Mobility and Transport, City of Eindhoven) on 2 June 2021. The role of BUAS within this project was to assist City of Eindhoven with the development of the challenges to be tackled by the participating teams, and find relevant speakers and mentors who would be supporting the students for the development of their solutions and jury members who would determine the winning teams. The project ended with a round table “Green and Safe Mobility for all: 5 Smart City(thon) Case studies” on November 17 organized as part of Smart City Expo World Congress 2021 in Barcelona. This project is funded by EIT Urban Mobility, an initiative of the European Institute of Innovation and Technology (EIT), a body of the European Union. EIT Urban Mobility acts to accelerate positive change on mobility to make urban spaces more livable. Learn more: eiturbanmobility.eu.Collaborating partnersCARNET (Lead organisation); Barcelona Institute of Technology for Habitat; Barcelona City Council; Bilbao City Hall; City of Hamburg; City of Eindhoven,; City of Lublin; Digital Hub Logistics Hamburg; Technical University of Catalonia, Tecnalia; UPC Technology Center.
Governments, fishermen, dredgers, nature organizations and researchers see that sand stocks are dwindling worldwide, while more and more sand from the North Sea will be needed to protect our coast against rising sea levels. We also extract a lot of sand in the Netherlands, especially from the North Sea. Every year we extract about 12 to 15 million cubic meters to protect our coast and about 15 million cubic meters as filling sand for roads and residential areas and for concrete and masonry sand. Every year we excavate a piece of seabed with the surface of the Schiermonnikoog island at a depth of about eighty centimeters. But our sand requirement continues to rise. Not only because we want to build more roads, homes and residential areas, but also because rising sea levels mean we need more and more sand for coastal protection. In this project a consortium of 21 partners and stakeholders will develop new knowledge and tools about the effects of sand extraction, with the goal to understand how it may be done sustainably despite the rising need for it. The project is led by Wageningen Marine Research and has been awarded funding under the ‘Onderzoek op Routes door Consortia’ (NWA ORC-call 2020/2021) scheme of the Dutch Research Council (NWO). Breda University of Applied Sciences will contribute with its MSP Challenge Simulation Platform, thereby developing and applying a bespoke sand extraction oriented North Sea edition, in close collaboration with data and simulation providing partners in the project.