Charging an electric vehicle needs to be as simple as possible for the user. He needs to park his car, plug his vehicle and identify to start charging. There is no need to understand the technology and protocols needed to reach this simple task.For the students and researchers of the Amsterdam University of Applied Science (AUAS / HvA), there is a need to understand as deep as possible all the techniques involved in this technology.The purpose of this document is to give to the reader the information he needs to understand how an electric car can be charged and how he can use these knowledges to analyses and interpret data.
DOCUMENT
Electric vehicles have penetrated the Dutch market, which increases the potential for decreased local emissions, the use and storage of sustainable energy, and the roll-out and use of electric car-sharing business models. This development also raises new potential issues such as increased electricity demand, a lack of social acceptance, and infrastructural challenges in the built environment. Relevant stakeholders, such as policymakers and service providers, need to align their values and prioritize these aspects. Our study investigates the prioritization of 11 Dutch decision-makers in the field of public electric vehicle charging. These decision-makers prioritized different indicators related to measurements (e.g., EV adoption rates or charge point profitability), organization (such as fast- or smart-charging), and developments (e.g., the development of mobility-service markets) using the best-worst method. The indicators within these categories were prioritized for three different scenario's in time. The results reveal that priorities will shift from EV adoption and roll-out of infrastructure to managing peak demand, using more sustainable charging techniques (such as V2G), and using sustainable energy towards 2030. Technological advancements and autonomous charging techniques will become more relevant in a later time period, around 2040. Environmental indicators (e.g., local emissions) were consistently valued low, whereas mobility indicators were valued differently across participants, indicating a lack of consensus. Smart charging was consistently valued higher than other charging techniques, independent of time period. The results also revealed that there are some distinct differences between the priorities of policymakers and service providers. Having a systematic overview of what aspects matter supports the policy discussion around EVs in the built environment.
DOCUMENT
The Netherlands is a frontrunner in the field of public charging infrastructure, having a high number of public charging stations per electric vehicle (EV) in the world. During the early years of adoption (2012-2015) a large percentage of the EV fleet were Plugin Hybrid Electric Vehicles (PHEV)due to the subsidy scheme at that time. With an increasing number of Full Electric Vehicles (FEVs) on the market and a current subsidy scheme for FEV only, a transition of the EV fleet from PHEV to FEV is expected. This is hypothesized to have effect on charging behavior of the complete fleet, reason to understand better how PHEVs and FEVs differ in charging behavior and how this impacts charging infrastructure usage. In this paper, the effects of the transition of PHEV to FEV is simulated by extending an existing Agent Based Model. Results show important effects of this transitionon charging infrastructure performance.
DOCUMENT
In the road transportation sector, CO2 emission target is set to reduce by at least 45% by 2030 as per the European Green Deal. Heavy Duty Vehicles contribute almost quarter of greenhouse gas emissions from road transport in Europe and drive majorly on fossil fuels. New emission restrictions creates a need for transition towards reduced emission targets. Also, increasing number of emission free zones within Europe, give rise to the need of hybridization within the truck and trailer community. Currently, in majority of the cases the trailer units do not possess any kind of drivetrain to support the truck. Trailers carry high loads, such that while accelerating, high power is needed. On the other hand, while braking the kinetic energy is lost, which otherwise could be recaptured. Thus, having a trailer with electric powertrain can support the truck during traction and can charge the battery during braking, helping in reducing the emissions and fuel consumption. Using the King-pin, the amount of support required by trailer can be determined, making it an independent trailer, thus requiring no modification on the truck. Given the heavy-duty environment in which the King-pin operates, the measurement design around it should be robust, compact and measure forces within certain accuracy level. Moreover, modification done to the King-pin is not apricated. These are also the challenges faced by V-Tron, a leading company in the field of services in mobility domain. The goal of this project is to design a smart King-pin, which is robust, compact and provides force component measurement within certain accuracy, to the independent e-trailer, without taking input from truck, and investigate the energy management system of the independent e-trailer to explore the charging options. As a result, this can help reduce the emissions and fuel consumption.
298 woorden: In the upcoming years the whole concept of mobility will radically change. Decentralization of energy generation, urbanization, digitalization of processes, electrification of vehicles and shared mobility are only some trends which have a strong influence on future mobility. Furthermore, due to the shift towards renewable energy production, the public and the private sector are required to develop new infrastructures, new policies as well as new business models. There are countless opportunities for innovative business models emerging. Companies in this field – such as charging solution provider, project management or consulting companies that are part of this project, Heliox and Over Morgen respectively – are challenged with countless possibilities and increasing complexity. How to overcome this problem? Academic research proposes a promising approach, namely the use of business model patterns for business model innovation. In short, these business model patterns are descriptions of proven practical solutions to common business model challenges. An example for a general pattern would be the business model pattern “Consumables”. It describes how to lock in a customer into an ecosystem by using a subsidized basic product and complement it with overpriced consumables. This pattern works really well and has been used by many companies (e.g. Senseo, HP, or Gillette). To support the business model innovation process of Heliox and Over Morgen as well as companies in the electric mobility space in general, we propose to systematically consolidate and develop business model patterns for the electric mobility sector and to create a database. Electric mobility patterns could not only foster creativity in the business model innovation process but also enhance collaboration in teams. By having a classified list of business model pattern for electric mobility, practitioners are equipped which a heuristic tool to create, extend and revise business models for the future.
In the coming decades, a substantial number of electric vehicle (EV) chargers need to be installed. The Dutch Climate Accord, accordingly, urges for preparation of regional-scale spatial programs with focus on transport infrastructure for three major metropolitan regions among them Amsterdam Metropolitan Area (AMA). Spatial allocation of EV chargers could be approached at two different spatial scales. At the metropolitan scale, given the inter-regional flow of cars, the EV chargers of one neighbourhood could serve visitors from other neighbourhoods during days. At the neighbourhood scale, EV chargers need to be allocated as close as possible to electricity substations, and within a walkable distance from the final destination of EV drivers during days and nights, i.e. amenities, jobs, and dwellings. This study aims to bridge the gap in the previous studies, that is dealing with only of the two scales, by conducting a two-phase study on EV infrastructure. At the first phase of the study, the necessary number of new EV chargers in 353 4-digit postcodes of AMA will be calculated. On the basis of the findings of the Phase 1, as a case study, EV chargers will be allocated at the candidate street parking locations in the Amsterdam West borough. The methods of the study are Mixed-integer nonlinear programming, accessibility and street pattern analysis. The study will be conducted on the basis of data of regional scale travel behaviour survey and the location of dwellings, existing chargers, jobs, amenities, and electricity substations.