Within the FREVUE project 80 fully electric freight vehicles have been deployed. It showed that city logistics operations can be performed by electric freight vehicles, but that at the moment the high vehicle purchasing costs are still a barrier for large scale utilisation of electric freight vehicles for logistics operations. Only for small EFVs (lighter than 3.5 tons) a short term feasible business case is possible. For the larger vans and rigid trucks, a feasible business case is not yet possible from an operator’s perspective, often not even with subsidies. Copyright © 2018 Society of Automotive Engineers of Japan, Inc. All rights reserved
DOCUMENT
In this study we developed models in order to predict the need for public charging points. These models give municipalities an insight into various environmental and consumer related factors that determine the need for public charging points for electric vehicles in the neighbourhood. These factors include, amongst others, the average gross monthly income of households in a certain neighbourhood and the overall number of cars in a certain neighbourhood. On the basis of the models it turns out, among other factors, that neighbourhoods with households with a relatively high average gross monthly income, and a relatively high number of cars, need a relatively large number of public charging points for electric vehicles.
DOCUMENT
This paper discusses the current developments, as well as the barriers and opportunities for using electric freight vehicles in daily city logistics operations based on the experiences from a number of running demonstrations. This paper discusses results from other studies and demonstrations that were published on electro mobility in city logistics in the last three years, as an update of an earlier state of the art review. Next, we present recent narratives based on the more than 100 electric freight vehicles (EFVs) deployed in the European project FREVUE and the experiences of TransMission in using four battery electric Cargohoppers to perform their urban deliveries in Amsterdam. Over the years the attention shifted from a focus on the limitations of EFVs in comparison to conventional vehicles, such as the limited range, towards the question how to better adapt the operations to deal with the EFV characteristics. Although, the business case for using EFVs, in comparison to conventional vehicles, is still suffering from high vehicle purchase price and uncertainty about its residual value, the use of EFVs in daily operations shows that in the majority of cases the current generation of EFVs have a good technical performance. Companies using EFVs are generally satisfied with these vehicles. Obviously still a number of barriers has to be levelled, but large scale EFV usage seems more feasible than before. © 2016 Published by Elsevier B.V.
LINK
DOCUMENT
Purpose Electric freight vehicles (EFVs) are one of the solutions to improve city logistics’ sustainability. EFVs, that are electric powered light and heavy vehicles with a number plate, have the potential to make zero emission city logistics possible within the urban area. However, although trials have been undertaken for the last years, large-scale usage of EFVs in city logistics does not occur yet. EFVs are technically possi- ble, but the implementation of EFVs in practice is relatively limited. Design This chapter examines by reviewing current and past EFV implementations, what are the challenges, barriers and success factors for EFVs in city logistics operations. EFVs have especially positive envir- onmental effects, but are overall usually more expensive (especially in procurement) than conventional vehicles. Besides, other technical and operational issues remain to be solved, and many uncertainties still exist on long-term usage. Findings Three main barriers for large-scale EFV uptake are identi- fied. The current logistics concepts are developed for conventional vehi- cles and should be redesigned to fit EFVs better. Local authorities’ support is essential in order to find a positive (or not too negative) business case. And EFV implementation requires companies that want to be sustainable. This contribution presents examples of how some companies or authorities deal with these barriers. Value This chapter concludes by identifying elements that are necessary for acceleration of EFV uptake in city logistics operations.
LINK
This study aims to evaluate the effect in the energy network of a big shared of decarbonise vehicles (NGV and EV) based on car-use profiles of current conventional and electric vehicles in the city of Groningen. Charging profiles were developed within CBS dataset of mobility and transport, and the electric charging profiles provided by E-Laad.
DOCUMENT
The increased adoption of electric vehicles worldwide is largely caused by the uptake of private electric cars. In parallel other segments such as busses, city logistics and taxis, are increasingly becoming electrified. Amsterdam is an interesting case, as the municipality and the taxi sector have signed a voluntary agreement to realise a full electric taxi fleet by 2025. This paper investigates the results of a survey that was distributed amongst 3000 taxi drivers to examine perceptions and attitudes on the municipal charging incentives as well as taxi ride characteristics.
MULTIFILE
The mass adoption of Electric Vehicles (EVs) might raise pressure on the power system, especially during peak hours. Therefore, there is a need for delayed charging. However, to optimize the charging system, the progression of charging from an empty battery until a full battery of the EVs based on realworld data needs to be analyzed. Many researchers currently view this charging profile as a static load and ignore the actual charging behavior during the charging session. This study investigates how different factors influence the charging profile of individual EVs based on real-world data of charging sessionsin the Netherlands, enabling optimization analysis of EV smart charging schemes.
DOCUMENT
With the rise of the number of electric vehicles, the installment of public charging infrastructure is becoming more prominent. In urban areas in which EV users rely on on-street parking facilities, the demand for public charging stations is high. Cities take on the role of implementing public charging infrastructure and are looking for efficient roll-out strategies. Municipalities generally reserve the parking spots next to charging stations to ensure their availability. Underutilization of these charging stations leads to increased parking pressure, especially during peak hours. The city of The Hague has therefore implemented daytime reservation of parking spots next to charging stations. These parking spots are exclusively available between 10:00 and 19:00 for electric vehicles and are accessible for other vehicles beyond these times. This paper uses a large dataset with information on nearly 40.000 charging sessions to analyze the implementation of the abovementioned scheme. An unique natural experiment was created in which charging stations within areas of similar parking pressure did or did not have this scheme implemented. Results show that implemented daytime charging 10-19 can restrict EV owners in using the charging station at times when they need it. An extension of daytime charging to 10:00-22:00 proves to reduce the hurdle for EV drivers as only 3% of charging sessions take place beyond this time. The policy still has the potential to relieve parking pressure. The paper contributes to the knowledge of innovative measures to stimulate the optimized rollout and usage of charging infrastructure.
DOCUMENT
The number of light commercial vehicles (LCV) in cities is growing, which puts increasing pressure on the liveability of cities. Small electric freight vehicles and cargo bikes can offer a solution, as they take less space, can manoeuvre easily and free from polluting emissions. Within the two-year LEVV-LOGIC project, (2016-2018) the use of light electric freight vehicles (LEFVs) for city logistics is explored. The project combines expertise on logistics, vehicle design, charging infrastructure and business modelling to find the optimal concept. This paper presents guidelines for the design of LEFV based on the standardized rolling container (length 800 mm, width 640 mm, height 1600 mm) and for the charging infrastructure.
DOCUMENT