It has been suggested that physical education (PE) and active transport can make a meaningful contribution to children's physical activity (PA) levels. However, data on the contribution these activities to total PA is scarce, and PE's contribution to total physical activity energy expenditure (PAEE) has to our knowledge never been determined. This is probably explained by the methodological complexity of determining PAEE (Welk, 2002). In this paper, we present the first data of an ongoing study using combined heart rate monitoring and accelerometry, together with activity diaries. Over the six measurement days, PE contributed 5% to total PAEE, and 16% to school-related PAEE, whereas active transportation had a much larger contribution.
DOCUMENT
Introduction: It has been suggested that physical education (PE) can make a meaningful contribution to children's physical activity (PA) levels. The amount of moderate-to-vigorous physical activity (MVPA) in PE has been quantified in various manners, including heart rate monitoring and direct observation (Fairclough & Stratton, 2005). However, data on the contribution of PE to total PA is scarce, and PE's contribution to total physical activity energy expenditure (PAEE) has to our knowledge never been determined. This is probably explained by the methodological complexity of determining PAEE (Welk, 2002). However, the fairly recent emergence of combined sensing methodology allows for low-invasive measurement of PAEE in free-living conditions. In this paper, we present the first data of an ongoing study using combined heart rate monitoring and accelerometry, together with activity diaries. We assessed the contribution of PE and other school-related activity to PAEE and MVPA. Methods: Nineteen secondary school students (16 ± 0,7 yrs, BMI 22 ± 4) were included after they and their parents had consented. All had 100 minutes of scheduled PE per week. Actiheart monitors (CamNtech, Cambridge, UK) were used to determine PAEE on four weekdays and two weekend days consecutively. Actiheart monitors combine a heart rate monitor and an uniaxial accelerometer in a single 10 gram unit, that is applied to the chest with electrodes. Using a step test, an individual heart rate-energy expenditure relationship was determinded in each subject. Through a validated branched equation model (Brage, S. et al., 2007), energy expenditure was calculated. In addition, subjects kept an activity diary for the same six-day period. They recorded predefined activities including PE and active transport. These activities were then retraced to the Actiheart data by visual inspection. Results: Table 1 shows the (contribution of) PE, and school-related active transport to PAEE, while table 2 shows similar data for MVPA. Data are mean (± SD). Table 1: PAEE for PE, and active transport (AT). Table 2: MVPA for PE and active transport (AT). PAEE (KJ) % of total % of school PE 805(474) 5(4) 16(7) AT 1698(1033) 11(6) 31(11) MVPA (min) % of total % of school PE 36(19) 9(8) 22(11) AT 90(56) 20(11) 48(14) Over all six days, the physical activity level (PAL, which is total EE/Resting EE) was 1,54 ± 0,12; total MVPA was 472 min ± 179, and total PAEE 16262 KJ ± 5267. PAEE at school (4 days, including AT) was 5311 ± 3065 KJ, amounting to 34 % of total PAEE during the six measurement days. Students accumulated 179 ± 77 minutes of MVPA at school, which was 38% of total MVPA. Discussion: To our knowledge, this is the first study to present data on PE's contribution to total physical activity energy expenditure. Over the six measurement days, PE contributed 5% to total PAEE, and 16% to school-related PAEE. This was substantially less than the amount of energy expended for active transport to and from school. However, it should be noted that in the Netherlands, the vast majority of secondary school students cycle to school. And while PE was scheduled on one day per week in all of the measured students, active transport takes place on all school days. The total amount of MVPA accumulated at school was 179 minutes. With adolescent physical activity guidelines generally recommending 60 min of MVPA per day, i.e. 420 minutes per week, this means that school-related PA covered ~43% of this. PE provided 36 minutes to this total, all on one day. It could be argued that daily PE could potentially provide a substantial amount of MVPA. But with current time allocated to PE in the curriculum, its contribution to physical activity guidelines and PAEE is quite modest. The preliminary data presented here reflect a small subsample of a larger study that is still in progress. Therefore, care should be taken not to interpret these outcomes as representative for the whole of the Netherlands. However, they do provide a first indication for the order of magnitude of the contribution of PE and school-related activity to total PAEE. References: Fairclough, S. J. & Stratton, G. (2005) Physical Activity Levels in Middle and High School Physical Education: A Review. Pediatric Exercise Science, 17, 217. Welk, G. J. (2002) Physical activity assessments for health-related research, Champaign, Ill.; United States, Human Kinetics. Brage, S., Ekelund, U., Brage, N. Hennings, M.A., Froberg, K., Franks, P.W., Wareham. N.J. (2007). Hierarchy of individual calibration levels for heart rate and accelerometry to measure physical activity. J Appl Physiol, 103, (682-692)
DOCUMENT
Uit het rapport: "Deze onderzoeksagenda is tot stand gebracht door de lectoren die samenwerken in het Nationaal Lectoren Platform Urban Energy. Alle betrokkenen bij het platform zijn in staat gesteld om bij te dragen aan de tekst, speciale dank daarbij voor de bijdragen en commentaren vanuit de TKI Urban Energy en de HCA topsector Energie."
DOCUMENT
Client: Foundation Innovation Alliance (SIA - Stichting Innovatie Alliantie) with funding from the ministry of Education, Culture and Science (OCW) Funder: RAAK (Regional Attention and Action for Knowledge circulation) The RAAK scheme is managed by the Foundation Innovation Alliance (SIA - Stichting Innovatie Alliantie) with funding from the ministry of Education, Culture and Science (OCW). Early 2013 the Centre for Sustainable Tourism and Transport started work on the RAAK-MKB project ‘Carbon management for tour operators’ (CARMATOP). Besides NHTV, eleven Dutch SME tour operators, ANVR, HZ University of Applied Sciences, Climate Neutral Group and ECEAT initially joined this 2-year project. The consortium was later extended with IT-partner iBuildings and five more tour operators. The project goal of CARMATOP was to develop and test new knowledge about the measurement of tour package carbon footprints and translate this into a simple application which allows tour operators to integrate carbon management into their daily operations. By doing this Dutch tour operators are international frontrunners.Why address the carbon footprint of tour packages?Global tourism contribution to man-made CO2 emissions is around 5%, and all scenarios point towards rapid growth of tourism emissions, whereas a reverse development is required in order to prevent climate change exceeding ‘acceptable’ boundaries. Tour packages have a high long-haul and aviation content, and the increase of this type of travel is a major factor in tourism emission growth. Dutch tour operators recognise their responsibility, and feel the need to engage in carbon management.What is Carbon management?Carbon management is the strategic management of emissions in one’s business. This is becoming more important for businesses, also in tourism, because of several economical, societal and political developments. For tour operators some of the most important factors asking for action are increasing energy costs, international aviation policy, pressure from society to become greener, increasing demand for green trips, and the wish to obtain a green image and become a frontrunner among consumers and colleagues in doing so.NetworkProject management was in the hands of the Centre for Sustainable Tourism and Transport (CSTT) of NHTV Breda University of Applied Sciences. CSTT has 10 years’ experience in measuring tourism emissions and developing strategies to mitigate emissions, and enjoys an international reputation in this field. The ICT Associate Professorship of HZ University of Applied Sciences has longstanding expertise in linking varying databases of different organisations. Its key role in CARMATOP was to create the semantic wiki for the carbon calculator, which links touroperator input with all necessary databases on carbon emissions. Web developer ibuildings created the Graphical User Interface; the front end of the semantic wiki. ANVR, the Dutch Association of Travel Agents and Tour operators, represents 180 tour operators and 1500 retail agencies in the Netherlands, and requires all its members to meet a minimum of sustainable practices through a number of criteria. ANVR’s role was in dissemination, networking and ensuring CARMATOP products will last. Climate Neutral Group’s experience with sustainable entrepreneurship and knowledge about carbon footprint (mitigation), and ECEAT’s broad sustainable tourism network, provided further essential inputs for CARMATOP. Finally, most of the eleven tour operators are sustainable tourism frontrunners in the Netherlands, and are the driving forces behind this project.
To reach the European Green Deal by 2050, the target for the road transport sector is set at 30% less CO2 emissions by 2030. Given the fact that heavy-duty commercial vehicles throughout Europe are driven nowadays almost exclusively on fossil fuels it is obvious that transition towards reduced emission targets needs to happen seamlessly by hybridization of the existing fleet, with a continuously increasing share of Zero Emission vehicle units. At present, trailing units such as semitrailers do not possess any form of powertrain, being a missed opportunity. By introduction of electrically driven axles into these units the fuel consumption as well as amount of emissions may be reduced substantially while part of the propulsion forces is being supplied on emission-free basis. Furthermore, the electrification of trailing units enables partial recuperation of kinetic energy while braking. Nevertheless, a number of challenges still exist preventing swift integration of these vehicles to daily operation. One of the dominating ones is the intelligent control of the e-axle so it delivers right amount of propulsion/braking power at the right time without receiving detailed information from the towing vehicle (such as e.g. driver control, engine speed, engine torque, or brake pressure, …etc.). This is required mainly to ensure interoperability of e-Trailers in the fleets, which is a must in the logistics nowadays. Therefore the main mission of CHANGE is to generate a chain of knowledge in developing and implementing data driven AI-based applications enabling SMEs of the Dutch trailer industry to contribute to seamless energetic transition towards zero emission road freight transport. In specific, CHANGE will employ e-Trailers (trailers with electrically driven axle(s) enabling energy recuperation) connected to conventional hauling units as well as trailers for high volume and extreme payload as focal platforms (demonstrators) for deployment of these applications.
The production, use, disposal and recovery of packaging not only generates massive volumes of waste, it also consumes raw materials, water and energy (Fitzpatrick et al. 2012). Simultaneously, consumers have shown an increasing interest in products incorporating sustainable and social attributes (Kletzan et al., 2006). As a result, environmentally friendly packaging, also called ecofriendly or sustainable packaging, has become mainstream. In this context, packaging is more than just ensuring the product's protection and easing transportation, it is also a communicative tool (Palmer, 2000) and it becomes associated with multiple drivers of the purchasing process. Consequently, companies face pressure to innovate responding to consumer demands, and focusing on sustainable solutions that reduce harmful materials and favour green alternatives for both, the product and the packaging. Although the above has triggered research on consumer choice for sustainable products and alternatives on sustainable packaging, the relation between sustainable packaging and consumer behaviour remains underexplored. This research unpacks this relationship, i.e., empirically verifies which dimensions (recyclability, biodegradability, reusability) of sustainable packaging are perceived and valued by consumers. Put differently, this research investigates consumer behaviour towards the functions of sustainable packaging in terms of product protection, convenience, reliability of information and promotion, and scrutinises the perceived credibility of the associated ethical responsibility claims. It aims to identify those packaging materials and/or sustainability characteristics perceived as more sustainable by consumers as well as the factors influencing actual consumer choice towards sustainable packaged products. We aim to gain more insights in the perceptual frame that different types of consumers apply when exposed to sustainable packaging. To this end, we will make use of revealed preference methods to measure consumer valuations of sustainable packaged products. This game-theoretic approach should provide a more complete depiction of consumers' perceptions and preferences.