Background Malnutrition is common in patients with Alzheimer's disease (AD) dementia and mild cognitive impairment (MCI) and is associated with institutionalization and increased mortality. Malnutrition is the result of a negative energy balance, which could be due to reduced dietary intake and/or higher energy expenditure. To study underlying mechanisms for malnutrition, we investigated dietary intake and resting energy expenditure (REE) of patients with AD dementia, MCI, and controls. In addition, we studied associations of global cognition (Mini-Mental State Examination (MMSE)) and AD biomarkers with dietary intake and REE. Methods We included 219 participants from the NUDAD project, 71 patients with AD dementia (age 68 +/- 8 years, 58% female, MMSE 24 +/- 3), 52 with MCI (67 +/- 8 years, 42% female, MMSE 26 +/- 2), and 96 controls (62 +/- 7 years, 52% female, MMSE 28 +/- 2). We used a 238-item food frequency questionnaire to assess dietary intake (energy, protein, carbohydrate, and fat). In a subgroup of 92 participants (30 patients with AD dementia, 22 with MCI, and 40 controls) we measured REE with indirect calorimetry. Between-group differences in dietary intake and REE were tested with ANOVAs. In the total sample, linear regression analyses were used to explore potential associations of MMSE score and AD biomarkers with dietary intake and REE. All analyses were adjusted for age, sex, education, and body mass index or fat-free mass. Results Patients with AD dementia and MCI did not differ from controls in total energy intake (1991 +/- 71 and 2172 +/- 80 vs 2022 +/- 61 kcal/day,p > 0.05) nor in protein, carbohydrate, or fat intake. Patients with AD dementia and MCI had a higher REE than controls (1704 +/- 41 and 1754 +/- 47 vs 1569 +/- 34 kcal/day,p < 0.05). We did not find any association of MMSE score or AD biomarkers with dietary intake or REE. Conclusions We found a higher REE, despite similar energy intake in patients with AD and MCI compared to controls. These findings suggest that elevated metabolism rather than reduced energy intake explains malnutrition in AD. These results could be useful to optimize dietary advice for patients with AD dementia and MCI.
Background & aims: High protein delivery during early critical illness is associated with lower mortality, while energy overfeeding is associated with higher mortality. Protein-to-energy ratios of traditional enteral formulae are sometimes too low to reach protein targets without energy overfeeding. This prospective feasibility study aimed to evaluate the ability of a new enteral formula with a high protein-to-energy ratio to achieve the desired protein target while avoiding energy overfeeding.Methods: Mechanically ventilated non-septic patients received the high protein-to-energy ratio nutrition during the first 4 days of ICU stay (n = 20). Nutritional prescription was 90% of measured energy expenditure. Primary endpoint was the percentage of patients reaching a protein target of ≥1.2 g/kg ideal body weight on day 4. Other endpoints included a comparison of nutritional intake to matched historic controls and the response of plasma amino acid concentrations. Safety endpoints were gastro-intestinal tolerance and plasma urea concentrations. Results: Nineteen (95%) patients reached the protein intake target of ≥1.2 g/kg ideal body weight on day 4, compared to 65% in historic controls (p = 0.024). Mean plasma concentrations of all essential amino acids increased significantly from baseline to day 4. Predefined gastro-intestinal tolerance was good, but unexplained foul smelling diarrhoea occurred in two patients. In one patient plasma urea increased unrelated to acute kidney injury. Conclusions: In selected non-septic patients tolerating enteral nutrition, recommended protein targets can be achieved without energy overfeeding using a new high protein-to-energy ratio enteral nutrition.
MULTIFILE
Background & aims: Individual energy requirements of overweight and obese adults can often not be measured by indirect calorimetry, mainly due to the time-consuming procedure and the high costs. To analyze which resting energy expenditure (REE) predictive equation is the best alternative for indirect calorimetry in Belgian normal weight to morbid obese women.Methods: Predictive equations were included when based on weight, height, gender, age, fat free mass and fat mass. REE was measured with indirect calorimetry. Accuracy of equations was evaluated by the percentage of subjects predicted within 10% of REE measured, the root mean squared prediction error (RMSE) and the mean percentage difference (bias) between predicted and measured REE.Results: Twenty-seven predictive equations (of which 9 based on FFM) were included. Validation was based on 536 F (18–71 year). Most accurate and precise for the Belgian women were the Huang, Siervo, Muller (FFM), Harris–Benedict (HB), and the Mifflin equation with 71%, 71%, 70%, 69%, and 68% accurate predictions, respectively; bias −1.7, −0.5, +1.1, +2.2, and −1.8%, RMSE 168, 170, 163, 167, and 173 kcal/d. The equations of HB and Mifflin are most widely used in clinical practice and both provide accurate predictions across a wide range of BMI groups. In an already overweight group the underpredicting Mifflin equation might be preferred. Above BMI 45 kg/m2, the Siervo equation performed best, while the FAO/WHO/UNU or Schofield equation should not be used in this extremely obese group.Conclusions: In Belgian women, the original Harris–Benedict or the Mifflin equation is a reliable tool to predict REE across a wide variety of body weight (BMI 18.5–50). Estimations for the BMI range between 30 and 40 kg/m2, however, should be improved.
Along with the rapidly growing number of disabled people participating in competitive sports, there is an increased need for (para)medical support in disability sports. Disabled athletes experience differences in body composition, metabolism, training load and habitual activity patterns compared with non-disabled athletes. Moreover, it has been suggested that the well-recognized athlete triad, and low energy availability and low bone mineral density in particular, is even a greater challenge in disabled athletes. Therefore, it is not surprising that sport nutritionists of disabled athletes have expressed an urgency for increased knowledge and insights on the nutritional demands of this group. This project aims to investigate energy expenditure, dietary intake, body composition and bone health of disabled athletes, ultimately leading to nutritional guidelines that promote health and optimal sports performance for this unique population. For this purpose, we will conduct a series of studies and implementation activities that are inter-related and build on the latest insights from sports practice, technology and science. Our international consortium is highly qualified to achieve this goal. It consists of knowledge institutes including world-leading experts in sport and nutrition research, complemented with practical insights from nutritionists working with disabled athletes and the involvement of athletes and teams through the Dutch and Norwegian Olympic committees. The international collaboration, which is a clear strength of this project, is not only focused on research, but also on the optimization of professional practice and educational activities. In this regard, the outcomes of this project will be directly available for practical use by the (para)medical staff working with disabled athletes, and will be extensively communicated to sport teams to ensure that the new insights are directly embedded into daily practice. The project outcomes will also be incorporated in educational activities for dietetics and sport and exercise students, thereby increasing knowledge of future practitioners.
Along with the rapidly growing number of disabled people participating in competitive sports, there is an increased need for (para)medical support in disability sports. Disabled athletes experience differences in body composition, metabolism, training load and habitual activity patterns compared with non-disabled athletes. Moreover, it has been suggested that the well-recognized athlete triad, and low energy availability and low bone mineral density in particular, is even a greater challenge in disabled athletes. Therefore, it is not surprising that sport nutritionists of disabled athletes have expressed an urgency for increased knowledge and insights on the nutritional demands of this group. This project aims to investigate energy expenditure, dietary intake, body composition and bone health of disabled athletes, ultimately leading to nutritional guidelines that promote health and optimal sports performance for this unique population. For this purpose, we will conduct a series of studies and implementation activities that are inter-related and build on the latest insights from sports practice, technology and science. Our international consortium is highly qualified to achieve this goal. It consists of knowledge institutes including world-leading experts in sport and nutrition research, complemented with practical insights from nutritionists working with disabled athletes and the involvement of athletes and teams through the Dutch and Norwegian Olympic committees. The international collaboration, which is a clear strength of this project, is not only focused on research, but also on the optimization of professional practice and educational activities. In this regard, the outcomes of this project will be directly available for practical use by the (para)medical staff working with disabled athletes, and will be extensively communicated to sport teams to ensure that the new insights are directly embedded into daily practice. The project outcomes will also be incorporated in educational activities for dietetics and sport and exercise students, thereby increasing knowledge of future practitioners.