Recent years have shown the emergence of numerous local energy initiatives (prosumer communities) in the Netherlands. Many of them have set the goal to establish a local and sustainable energy provision on a not-for-profit basis. In this study we carried out exploratory case studies on a number of Dutch prosumer communities. The objective is to analyse their development process, to examine the barriers they encounter while organising their initiative, and to find how ICT could be applied to counteract these barriers and support communities in reaching their goals. The study shows that prosumer communities develop along a stepwise, evolutionary growth path, while they are struggling with organising their initiative, because the right expertise is lacking on various issues (such as energy technology, finance and legislation). Participants stated that, depending on the development phase of their initiative, there is a strong need for information and specific expertise. With a foreseeable growing technical complexity they indicated that they wanted to be relieved with the right tools and services at the right moment. Based on these findings we developed a generic solution through the concept of a prosumer community shopping mall. The concept provides an integrated and scalable ICT environment, offering a wide spectrum of energy services that supports prosumer communities in every phase of their evolutionary growth path. As such the mall operates as a broker and clearing house between 2 prosumer communities and service providers, where the service offerings grow and fit with the needs and demands of the communities along their growth path. The shopping mall operates for many prosumer communities, thus providing economies of scale. Each prosumer community is presented its own virtual mall, with specific content and a personalised look-and-feel.
Reducing energy consumption in urban households is essential for reaching the necessary climate research and policy targets for CO2 reduction and sustainability. The dominant approach has been to invest in technological innovations that increase household energy efficiency. This article moves beyond this approach, first by emphasising the need to prioritise reducing energy demand over increasing energy efficiency and, second, by addressing the challenge of energy consumption at the level of the community, not the individual household. It argues that energy consumption is shaped in and by social communities, which construct consciousness of the energy implications of lifestyle choices. By analysing a specific type of community, a digital community, it looks at the role that communication on online discussion boards plays in the social process of questioning energy needs and shaping a “decent lifestyle”. The article explores three social processes of community interaction around energy practices – coercive, mimetic, and normative – questioning the ways in which they contribute to the activation of energy discursive consciousness. In conclusion, the article reflects on the potential implications of these social processes for future research and interventions aimed at reducing energy demand. To illustrate how the three selected social processes influence one another, the article builds on the results of a research project conducted in Amsterdam, analysing the potential contribution of online discussion boards in shaping energy norms in the Sustainable Community of Amsterdam Facebook group.
The goal of a local energy community (LEC) is to create a more sustainable, resilient, and efficient energy system by reducing dependence on centralized power sources and enabling greater participation and control by local communities and individuals. LEC requires transformations in local energy systems, and strongly depends on the preferences and actions of the local actors involved. The necessity for extensive stakeholder involvement adds complexity to the energy transition, posing a significant challenge for all involved parties. The municipality of Leidschendam-Voorburg has committed to the national decision for energy transition. It has taken a strategic approach by proceeding De Heuvel/Amstelwijk as the pioneer in this initiative, leading the way for other neighborhoods to follow. It is crucial to devise strategies that effectively facilitate stakeholder engagement. To this end, a thorough stakeholder analysis is needed. Such an analysis can focus on the identification of key stakeholders, their interests, their influence, and their behavioral characteristics in relation to the energy transition. Additionally, it's crucial to uncover the challenges encountered by these stakeholders and finally develop appropriate strategies to address them hence enhance their engagement. This thesis begins with an introduction to the research background, including a presentation of the case study and a statement of the problem identified in the field, followed by the research questions underpinning the study. A thorough literature review ensues, providing a robust synthesis of existing research relating to stakeholder engagement in LECs, with a view to expediting energy transitions. The literature review not only forms the foundation for the research methods adopted in this study but also promotes in the construction of the conceptual model. Subsequent to the literature review, the research method is detailed. The filed research is conducted in five steps: Step 1 - identification of stakeholders, Step 2 - prioritization of stakeholders, Step 3 - interviewing, Step 4 - data analysis, including stakeholder profiling with mapping and addressing challenges, and finally, Step 5 - proposal of strategies for stakeholder engagement enhancement based on the expected and current levels of stakeholders engagement. This research collects necessary information to understand the profiles of stakeholders in De Heuvel/Amstelwijk, tackle challenges faced by different stakeholders, propose strategies to increase stakeholders engagement. It not only aims to enrich the depth of theoretical knowledge on the subject matter but also strives to aid in the development of a localized energy strategy that is optimally suited for the De Heuvel/Amstelwijk neighborhood as good example for other neighborhoods.