In September 2009 the department of Engineering of Fontys University of Applied Sciences in the Netherlands has started a pilot honours program for excellent engineering students called PRogram OUstanding Development (PROUD). Aim of this program is to give those engineering students, who have the ambition, the opportunity to work on extra profession related challenges in their study. By means of this PROUD program Fontys University of Applied Sciences is responding to the wishes of students for extra curricular activities and increasing need from the industry for excellent professionals with an extra level of theoretical knowledge and practical experience. In this paper the courses offered at the Engineering department of the Fontys University of Applied Sciences are discussed. Different study possibilities/routings for students were developed depending on earlier acquainted competences, adaptation abilities to our system (special possibilities for slow starters) and tracking and tracing by intensive study coaching. This resulted in an improvement of the yield of students to 74% of students started in 2008. After working successfully on reducing the drop out rate of our engineering students the department focused on possibilities for excellent students. The department started the PROUD pilot together with engaged engineering students. In 2008 engineering students have carried out a research among their fellow students, lecturers, other institutes [1] and industry. This resulted in a quite different approach of an honours program for the department of Electronic and Electrical Engineering. In the PROUD program the student is stimulated to personally shape his educational career and to explicitly work on developing his own competences. The PROUD excellent program starts after the first year and extends to at least 3 semesters in the following years. The student, guided by a supervisor and outside the regular study time, is working on building an excellent portfolio at the university as well as in industry. During this period the PROUD student will work in industry one day a week in average. This is on top of his bachelor educational program. The students will receive an excellent honours certificate together with their bachelor's degree at the end of the study to express their honourable work. Each year about 20 students apply for a place in PROUD but thus far only about 3-4 passed the first interview round. It turns out that student, university and industry are eager to participate in this PROUD program.
From the article: This paper describes the external IT security analysis of an international corporate organization, containing a technical and a social perspective, resulting in a proposed repeatable approach and lessons learned for applying this approach. Part of the security analysis was the utilization of a social engineering experiment, as this could be used to discover employee related risks. This approach was based on multiple signals that indicated a low IT security awareness level among employees as well as the results of a preliminary technical analysis. To carry out the social engineering experiment, two techniques were used. The first technique was to send phishing emails to both the system administrators and other employees of the company. The second technique comprised the infiltration of the office itself to test the physical security, after which two probes were left behind. The social engineering experiment proved that general IT security awareness among employees was very low. The results allowed the research team to infiltrate the network and have the possibility to disable or hamper crucial processes. Social engineering experiments can play an important role in conducting security analyses, by showing security vulnerabilities and raising awareness within a company. Therefore, further research should focus on the standardization of social engineering experiments to be used in security analyses and further development of the approach itself. This paper provides a detailed description of the used methods and the reasoning behind them as a stepping stone for future research on this subject. van Liempd, D., Sjouw, A., Smakman, M., & Smit, K. (2019). Social Engineering As An Approach For Probing Organizations To Improve It Security: A Case Study At A Large International Firm In The Transport Industry. 119-126. https://doi.org/10.33965/es2019_201904l015
MULTIFILE
This paper describes a model for education in innovative engineering. The kernel of this model is, that students from different departments of the faculty of Applied Science and Technology are placed in industry for a period of eighteen months after two-and-a-half year of theoretical studies. During this period students work in multi-disciplinary projects on different themes. Students will grow to fully equal employees in industry. Therefore it is important that besides students, teachers and company employees will participate in the projects. Also the involvement of other level students (University and high school) is recommended. The most important characteristics of the model can be summarized in innovative, interdisciplinary and international orientation.
Designing cities that are socially sustainable has been a significant challenge until today. Lately, European Commission’s research agenda of Industy 5.0 has prioritised a sustainable, human-centric and resilient development over merely pursuing efficiency and productivity in societal transitions. The focus has been on searching for sustainable solutions to societal challenges, engaging part of the design industry. In architecture and urban design, whose common goal is to create a condition for human life, much effort was put into elevating the engineering process of physical space, making it more efficient. However, the natural process of social evolution has not been given priority in urban and architectural research on sustainable design. STEPS stems from the common interest of the project partners in accessible, diverse, and progressive public spaces, which is vital to socially sustainable urban development. The primary challenge lies in how to synthesise the standardised sustainable design techniques with unique social values of public space, propelling a transition from technical sustainability to social sustainability. Although a large number of social-oriented studies in urban design have been published in the academic domain, principles and guidelines that can be applied to practice are large missing. How can we generate operative principles guiding public space analysis and design to explore and achieve the social condition of sustainability, developing transferable ways of utilising research knowledge in design? STEPS will develop a design catalogue with operative principles guiding public space analysis and design. This will help designers apply cross-domain knowledge of social sustainability in practice.
Various companies in diagnostic testing struggle with the same “valley of death” challenge. In order to further develop their sensing application, they rely on the technological readiness of easy and reproducible read-out systems. Photonic chips can be very sensitive sensors and can be made application-specific when coated with a properly chosen bio-functionalized layer. Here the challenge lies in the optical coupling of the active components (light source and detector) to the (disposable) photonic sensor chip. For the technology to be commercially viable, the price of the disposable photonic sensor chip should be as low as possible. The coupling of light from the source to the photonic sensor chip and back to the detectors requires a positioning accuracy of less than 1 micrometer, which is a tremendous challenge. In this research proposal, we want to investigate which of the six degrees of freedom (three translational and three rotational) are the most crucial when aligning photonic sensor chips with the external active components. Knowing these degrees of freedom and their respective range we can develop and test an automated alignment tool which can realize photonic sensor chip alignment reproducibly and fully autonomously. The consortium with expertise and contributions in the value chain of photonics interfacing, system and mechanical engineering will investigate a two-step solution. This solution comprises a passive pre-alignment step (a mechanical stop determines the position), followed by an active alignment step (an algorithm moves the source to the optimal position with respect to the chip). The results will be integrated into a demonstrator that performs an automated procedure that aligns a passive photonic chip with a terminal that contains the active components. The demonstrator is successful if adequate optical coupling of the passive photonic chip with the external active components is realized fully automatically, without the need of operator intervention.