In response to globalisation and internationalisation of both higher education and the job market, The Hague University of Applied Sciences (THUAS) has seen a considerable increase in English-medium courses, i.e. non-language subjects taught through English. Internationally, the rise of English-medium instruction (EMI) has led to research on, and discussion about the possible side-effects of a change in instructional language. More specifically, whether using a foreign language as the medium of instruction has a negative impact on teaching and learning. This paper reports the findings of a pilot research project into the implications of English-medium instruction (EMI) as perceived by students and teachers of the bachelor program Commercial Economics at the Faculty of Business, Finance and Administration at THUAS. Research methods used to collect data include face-to-face interviews with both students and lecturers involved in EMI subject courses, a student questionnaire, and lesson observations. Despite regular exposure to English and an adequate self-perceived English proficiency, results show that a considerable number of students, as well as teaching staff are experiencing difficulties with English-medium instruction and that for many EMI is not as efficient in transferring academic content as instruction in the mother tongue.
Part 2 of English as a Medium of Learning in Schoolsexamines effective ways of delivering EML in primary andsecondary schools. It explores specific language thatteachers need in order to explain subject concepts, to askquestions, and to respond, manage and model language forEML lessons. Planning for EML, providing support strategiesfor learners and evaluating subject and language learning,are discussed with a range of examples for teachers to useor adapt. Further reading material is also recommended.
In bilingual streams in the Netherlands, school subjects are taught in an additional language so that pupils learn both subject content and the target language by using language meaningfully. Teachers of English in bilingual streams (TEBs) are often expected to collaborate with subject teacher colleagues (STs). In addition, they teach separate language lessons. This provides TEBs with specific challenges. This article reports on a focus group (FG) study exploring the extent to which the ideals of stakeholders in bilingual schools in the Netherlands reflect the literature on this topic, using a frame of reference developed for this purpose (Dale, Oostdam & Verspoor, 2017). Five FGs were held with TEBs and STs from Dutch schools in the network for bilingual education and with members of the network’s quality assurance panels. Each FG consisted of between three and six participants with a similar role in bilingual education; audit panel chairpersons, audit panel secretaries and STs and TEBs from different schools. Participants were asked to discuss what an ideal English teacher would do in English lessons and in cooperation with subject colleagues. Data consists of five transcripts of the FG discussions. On the basis of inductive and deductive analyses (using MaxQDA), the ideals of stakeholders are positioned in the framework to explore to what extent different types of stakeholders have complementary or conflicting views. The findings suggest that stakeholders need to develop more shared understandings and a shared language to allow TEBs to realise their ambitions. References Dale, L., Oostdam, R., & Verspoor, M. (2017). Searching for identity and focus: Towards an analytical framework for language teachers in bilingual education. International Journal of Bilingual Education and Bilingualism, doi:10.1080/13670050.2017.1383351
For English see below In dit project werkt het Lectoraat ICT-innovaties in de Zorg van hogeschool Windesheim samen met zorganisaties de ZorgZaak, De Stouwe, en IJsselheem en daarnaast Zorgcampus Noorderboog, Zorgtrainingscentrum Regio Zwolle, Patiëntenfederatie NPCF, VitaalThuis, ActiZ, Vilans, V&VN, Universiteit Twente en het Lectoraat Innoveren in de Ouderenzorg van Windesheim aan het in staat stellen van wijkverpleegkundigen om autonoom en doelmatig, op basis van klinisch redeneren, eHealth te indiceren en in te zetten bij cliënten. De aanleiding voor dit project wordt gevormd door de wijzigingen per 1 januari 2015 in de Zorgverzekeringswet. Wijkverpleegkundigen zijn sindsdien zelf verantwoordelijk voor de indicatiestelling en zorgtoewijzing voor verzorging en verpleging thuis: zij moeten bepalen welke zorg hun cliënten nodig hebben gezien hun individuele situaties, en hoe die zorg het best geleverd kan worden. Zorgverzekeraars leggen hierbij minimumeisen op, o.a. met betrekking tot de inzet van eHealth. Wijkverpleegkundigen hebben op dit moment echter niet of nauwelijks ervaring met het inzetten en toepassen van technologische toepassingen zoals eHealth. Vraagarticulatie leidde tot de volgende praktijkvraagstelling: 1. Hoe kunnen wijkverpleegkundigen worden voorzien in hun informatiebehoefte over eHealth? 2. Hoe kunnen wijkverpleegkundigen worden ondersteund in hun klinisch redeneren over het inzetten van eHealth bij hun cliënten? 3. Hoe kunnen wijkverpleegkundigen worden ondersteund bij het inzetten van eHealth in hun zorgproces? Het project levert hiertoe drie bijdragen: - De eerste bijdrage is een duurzaam geborgde keuzehulp (een app voor tablet of smartphone) waarmee wijkverpleegkundigen toegang hebben tot de benodigde informatie over eHealth-toepassingen en die aansluit bij de manier waarop wijkverpleegkundigen zorg indiceren (bijvoorbeeld door relaties te leggen tussen NIC-interventies en bijpassende eHealth-toepassingen). - Informatievoorziening is niet een afdoende antwoord op de handelingsverlegenheid van de wijkverpleegkundige omdat eHealth sterk in ontwikkeling is en blijft waardoor er altijd een discrepantie zal bestaan tussen de beschikbare en de benodigde informatie. . De tweede bijdrage van dit project is daarom kennis over (en inzicht in) het klinisch redeneren over de inzet van eHealth. Deze kennis wordt in het project doorvertaald naar een trainingsmodule die erop is gericht om het klinisch redeneren van wijkverpleegkundigen over het inzetten van eHealth en andere thuiszorgtechnologie bij hun cliënten te versterken. - De derde bijdrage van dit project omhelst inbedding van bovengenoemde resultaten in het verpleegkunde-onderwijs van onder meer Windesheim en in nascholingstrajecten voor wijkverpleegkundigen. Voor duurzame, bredere inbedding in het onderwijs wordt samengewerkt met regionale zorgonderwijsnetwerken. In this project the research group IT-innovations in Health Care of Windesheim University of Applied Sciences cooperates with care organisations de ZorgZaak, De Stouwe, and IJsselheem, and stakeholders Zorgcampus Noorderboog, Zorgtrainingscentrum Regio Zwolle, Patiëntenfederatie NPCF, VitaalThuis, ActiZ, Vilans, V&VN, University of Twente, and research group Innovation of Care of Older Adults of Windesheim to enable home care nurses to autonomously and adequately, based on clinical reasoning, allocate eHealth and implement it in patient care. The motivation behind this project lies in the alterations in the care insurance legislation per January 2015. Since then, home care nurses are responsible for the care allocation of all care at home: they determine which care their clients require, taking into account the individual situations, and how this care can best be delivered. Care insurance companies impose minimum requirements for this allocation of home care, among others concerning the implementation of eHealth. Home care nurses, however, have no or limited information about and experience with technical applications like eHealth. Articulation of the demands of home care nurses resulted in the following questions: 1. How can home care nurses be provided with information concerning eHealth? 2. How can home care nurses be supported in their clinical reasoning about the deployment of eHealth by their patients? 3. How can home care nurses be supported when deploying eHealth in their care process? This project contributes in three ways: " The first contribution is a sustainable selection tool (an app for tablet or smartphone) to be used by home care nurses to provide them with the required information about eHealth applications. This selection tool will work in accordance with how home care nurses allocate care, e.g. by relating NIC-interventions to matching eHealth applications. " Providing information is an insufficient, although necessary, answer to the demands of home care nurses because of continuously developing eHealth applications. Hence, the second contribution of this project is knowledge about (and insight in) the clinical reasoning about the deployment of eHealth. This knowledge will be converted into a training module aimed at strengthening the clinical reasoning about the deployment of eHealth by their patients. " The third contribution of this project concerns embedding the selection tool and the training module in regular education (among others at Windesheim) and in refresher courses for home care nurses. Cooperation with regional care education networks will ensure sustainable and broad embedding of both the selection tool and the training module.
English: This living lab aims to support the creation, development and implementation of next generation concepts for sustainable healthcare logistics, with special attention for last mile solutions. Dutch healthcare providers are on the verge of a transition towards (more) sustainable business models, spurred by e.g., increasing healthcare costs, ongoing budget cuts, tight labor market conditions and increasing ecological awareness. Consequently, healthcare providers need to improve and innovate their business model and underlying logistics concept(s). Simultaneously, many cities are struggling with congestion in traffic, air quality and liveability in general. This calls for Last Mile Logistics (LML) concepts that can address challenges like effective and efficient resource planning, scheduling and utilization and, particularly, sustainability goals. LML can reduce environmental and social impact by decreasing emissions, congestion and pollution through effectively consolidating in-flows of goods and providing innovative solutions for care, wellbeing and related services. The research and initiatives in the living lab will address the following challenges: reducing the ecological footprint, reducing (healthcare-related) costs, improving service quality, decreasing loneliness of frail citizens and improving the livability of urban areas (reducing congestion and emissions). Given the scarcity and fragmentation of knowledge on healthcare logistics in organizations the living lab will also act as a learning community for (future) healthcare- and logistics professionals, thereby supporting the development of human capital. By working closely with related stakeholders and using a transdisciplinary research approach it is ensured that the developed knowledge and solutions deliver a contribution to societal challenges and have sound business potential.
English: This living lab aims to support the creation, development and implementation of next generation concepts for sustainable healthcare logistics, with special attention for last mile solutions. Dutch healthcare providers are on the verge of a transition towards (more) sustainable business models, spurred by e.g., increasing healthcare costs, ongoing budget cuts, tight labor market conditions and increasing ecological awareness. Consequently, healthcare providers need to improve and innovate their business model and underlying logistics concept(s). Simultaneously, many cities are struggling with congestion in traffic, air quality and liveability in general. This calls for Last Mile Logistics (LML) concepts that can address challenges like effective and efficient resource planning, scheduling and utilization and, particularly, sustainability goals. LML can reduce environmental and social impact by decreasing emissions, congestion and pollution through effectively consolidating in-flows of goods and providing innovative solutions for care, wellbeing and related services. The research and initiatives in the living lab will address the following challenges: reducing the ecological footprint, reducing (healthcare-related) costs, improving service quality, decreasing loneliness of frail citizens and improving the livability of urban areas (reducing congestion and emissions). Given the scarcity and fragmentation of knowledge on healthcare logistics in organizations the living lab will also act as a learning community for (future) healthcare- and logistics professionals, thereby supporting the development of human capital. By working closely with related stakeholders and using a transdisciplinary research approach it is ensured that the developed knowledge and solutions deliver a contribution to societal challenges and have sound business potential.