Apart from tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA), a third PA appears to occur in human plasma. Its activity is initiated when appropriate triggers of the contact system are added, and the activation depends on the presence of factor XII and prekallikrein in plasma. The activity of this, so-called, contact-system dependent PA accounts for 30% of the PA activity in the dextran sulphate euglobulin fraction of plasma and was shown not to be an intrinsic property of one of the contact-system components, nor could it be inhibited by inhibitory antibodies against t-PA or u-PA. We have succeeded in identifying this third PA in dextran sulphate euglobulin fractions of human plasma. Its smallest unit (SDS-PAGE) is an inactive 110 kDa single-chain polypeptide which upon activation of the contact system is converted to a cleaved, disulphide-bridged molecule with PA activity. The native form, presumably, is an oligomer, since the apparent Mr on gel-chromatography is 600,000. The IEP is 4.8, much lower than that of t-PA and u-PA. Although the active 110 kDa polypeptide cannot be inhibited by anti-u-PA, it yet comprises a 37 kDa piece with some u-PA related antigenic determinants. However, these determinants are in a latent or cryptic form, only detectable after denaturation by SDS. The 110 kDa polypeptide is evidently not a dimer of 55 kDa u-PA or a complex of u-PA with an inhibitor.(ABSTRACT TRUNCATED AT 250 WORDS)
LINK
IL-4 and IL-13 are prototypic Th2 cytokines that generate an “alternatively activated” phenotype in macrophages. We used high-density oligonucleotide microarrays to investigate the transcriptional profile induced in human monocytes by IL-13. After 8-h stimulation with IL-13, 142 genes were regulated (85 increased and 57 decreased). The majority of these genes were related to the inflammatory response and innate immunity; a group of genes related to lipid metabolism was also identified, with clear implications for atherosclerosis. In addition to characteristic markers of alternatively activated macrophages, a number of novel IL-13-regulated genes were seen. These included various pattern recognition receptors, such as CD1b/c/e, TLR1, and C-type lectin superfamily member 6. Several components of the IL-1 system were regulated. IL-1RI, IL-1RII, and IL-1Ra were all up-regulated, whereas the IL-1β-converting enzyme, caspase 1, and IRAK-M were down-regulated. LPS-inducible caspase 1 enzyme activity was also reduced in IL-13-stimulated monocytes, with a consequent decrease in pro-IL-1β processing. These data reveal that IL-13 has a potent effect on the transcriptional profile in monocytes. The IL-13-induced modulation of genes related to IL-1 clearly highlights the tightly controlled and complex levels of regulation of the production and response to this potent proinflammatory cytokine.
DOCUMENT
From PLoS website: In general, dietary antigens are tolerated by the gut associated immune system. Impairment of this so-called oral tolerance is a serious health risk. We have previously shown that activation of the ligand-dependent transcription factor aryl hydrocarbon receptor (AhR) by the environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) affects both oral tolerance and food allergy. In this study, we determine whether a common plant-derived, dietary AhR-ligand modulates oral tolerance as well. We therefore fed mice with indole-3-carbinole (I3C), an AhR ligand that is abundant in cruciferous plants. We show that several I3C metabolites were detectable in the serum after feeding, including the high-affinity ligand 3,3´-diindolylmethane (DIM). I3C feeding robustly induced the AhR-target gene CYP4501A1 in the intestine; I3C feeding also induced the aldh1 gene, whose product catalyzes the formation of retinoic acid (RA), an inducer of regulatory T cells. We then measured parameters indicating oral tolerance and severity of peanut-induced food allergy. In contrast to the tolerance-breaking effect of TCDD, feeding mice with chow containing 2 g/kg I3C lowered the serum anti-ovalbumin IgG1 response in an experimental oral tolerance protocol. Moreover, I3C feeding attenuated symptoms of peanut allergy. In conclusion, the dietary compound I3C can positively influence a vital immune function of the gut.
MULTIFILE
Exercise is one of the external factors associated with impairment of intestinal integrity, possibly leading to increased permeability and altered absorption. Here, we aimed to examine to what extent endurance exercise in the glycogen‐depleted state can affect intestinal permeability toward small molecules and protein‐derived peptides in relation to markers of intestinal function. Eleven well‐trained male volunteers (27 ± 4 years) ingested 40 g of casein protein and a lactulose/rhamnose (L/R) solution after an overnight fast in resting conditions (control) and after completing a dual – glycogen depletion and endurance – exercise protocol (first protocol execution). The entire procedure was repeated 1 week later (second protocol execution). Intestinal permeability was measured as L/R ratio in 5 h urine and 1 h plasma. Five‐hour urine excretion of betacasomorphin‐7 (BCM7), postprandial plasma amino acid levels, plasma fatty acid binding protein 2 (FABP‐2), serum pre‐haptoglobin 2 (preHP2), plasma glucagon‐like peptide 2 (GLP2), serum calprotectin, and dipeptidylpeptidase‐4 (DPP4) activity were studied as markers for excretion, intestinal functioning and recovery, inflammation, and BCM7 breakdown activity, respectively. BCM7 levels in urine were increased following the dual exercise protocol, in the first as well as the second protocol execution, whereas 1 h‐plasma L/R ratio was increased only following the first exercise protocol execution. FABP2, preHP2, and GLP2 were not changed after exercise, whereas calprotectin increased. Plasma citrulline levels following casein ingestion (iAUC) did not increase after exercise, as opposed to resting conditions. Endurance exercise in the glycogen depleted state resulted in a clear increase of BCM7 accumulation in urine, independent of DPP4 activity and intestinal permeability. Therefore, strenuous exercise could have an effect on the amount of food‐derived bioactive peptides crossing the epithelial barrier. The health consequence of increased passage needs more in depth studies.
DOCUMENT
Background and aims: Observational data indicate that diets rich in fruits and vegetables have a positive effect on inflammatory status, improve metabolic resilience and may protect against the development of non-communicable diseases. Nevertheless, experimental evidence demonstrating a causal relationship between nutrient intake (especially whole foods) and changes in metabolic health is scarce. This study investigated the pleiotropic effects of sulforaphane from broccoli sprouts, compared to pea sprouts, on biomarkers of endothelial function, inflammation and metabolic stress in healthy participants subjected to a standardized caloric challenge.Methods: In this double-blind, crossover, randomized, placebo-controlled trial 12 healthy participants were administered 16 g broccoli sprouts, or pea sprouts (placebo) followed by the standardized high-caloric drink PhenFlex given to disturb healthy homeostasis. Levels of inflammatory biomarkers and metabolic parameters were measured in plasma before and 2 h after the caloric overload.Results: Administration of broccoli sprouts promoted an increase in levels of CCL-2 induced by caloric load (p = 0.017). Other biomarkers (sICAM-1, sVCAM-1, hs-CRP, and IL-10) individually showed insignificant tendencies toward increase with administration of sulforaphane. Combining all studied biomarkers into the systemic low-grade inflammation score further confirmed upregulation of the inflammatory activity (p = 0.087) after sulforaphane. No significant effects on biomarkers of metabolic stress were detected.Conclusion: This study has demonstrated that sulforaphane facilitated development of a mild pro-inflammatory state during the caloric challenge, which could be suggestive of the onset of the hormetic response induced by this phytonutrient. The use of integrative outcomes measures such as the systemic low-grade inflammation score can be viewed as a more robust approach to study the subtle and pleiotropic effects of phytonutrients.Clinical trial registration:www.clinicaltrials.gov, identifier NCT05146804.Keywords: biomarkers; diet; glucoraphanin; hormesis; inflammation; nutrients; phenotypic flexibility; sulforaphane.
DOCUMENT
Understanding taste is key for optimizing the palatability of seaweeds and other non-animal-based foods rich in protein. The lingual papillae in the mouth hold taste buds with taste receptors for the five gustatory taste qualities. Each taste bud contains three distinct cell types, of which Type II cells carry various G protein-coupled receptors that can detect sweet, bitter, or umami tastants, while type III cells detect sour, and likely salty stimuli. Upon ligand binding, receptor-linked intracellular heterotrimeric G proteins initiate a cascade of downstream events which activate the afferent nerve fibers for taste perception in the brain. The taste of amino acids depends on the hydrophobicity, size, charge, isoelectric point, chirality of the alpha carbon, and the functional groups on their side chains. The principal umami ingredient monosodium l-glutamate, broadly known as MSG, loses umami taste upon acetylation, esterification, or methylation, but is able to form flat configurations that bind well to the umami taste receptor. Ribonucleotides such as guanosine monophosphate and inosine monophosphate strongly enhance umami taste when l-glutamate is present. Ribonucleotides bind to the outer section of the venus flytrap domain of the receptor dimer and stabilize the closed conformation. Concentrations of glutamate, aspartate, arginate, and other compounds in food products may enhance saltiness and overall flavor. Umami ingredients may help to reduce the consumption of salts and fats in the general population and increase food consumption in the elderly.
MULTIFILE
Dit projectvoorstel is gericht op de ontwikkeling van nieuwe moleculen om zelf, thuis infectieziekten te diagnosticeren. Om de diagnose van infectieziektes te bevorderen, met name in afgelegen gebieden, is de innovatieve strategie van point-of-care (POC), een snelle, accurate en sensitieve diagnostische test die door een patiënt zelf kan worden uitgevoerd, uitermate geschikt. Een simpel en klein toestel dat enzymatische activiteit uit microben kan meten is in ontwikkeling bij Enzyre B.V. Dit voorstel gaat over de ontwikkeling van nieuwe lichtgevende moleculen die de detectie van infectieziektes kunnen aantonen door middel van het Enzyre platform. Hiervoor wordt een nieuwe chemisch aanpak om dit soort lichtgevende moleculen te maken ontwikkeld. Dit is relevant voor de preventie en het monitoren controle van potentiële pandemieën zoals bijvoorbeeld de recente uitbraak van SARS-Cov-2, maar ook MERS, SARS, HIV, Ebola en meerdere influenza pandemieën uit het verleden