An ELISA was set up using polyvinylchloride microtiter plates coated with rabbit anti-UK IgG's and affino-purified goat anti-UK IgG's as second antibody. Detection occurred with rabbit anti-goat IgG antibodies conjugated with alkaline phosphatase. The assay is specific for urokinase (UK) with a detection limit of 100 pg/ml sample. Tissue-type plasminogen activator, up to concentrations of 100 ng/ml, does not interfere. The assay measures the antigen of the inactive zymogen pro-UK, the active enzyme UK and the UK-inhibitor complex with equal efficiency and gives the total UK antigen present, irrespective of its molecular form. Culture media of fibroblasts, endothelial- and kidney cells showed, despite the absence of active UK, antigen levels of 1.2, 23 and 65 ng/ml, respectively. In human plasma the UK concentration was found to be 3.5 +/- 1.4 ng/ml (mean +/- SD, n = 54). The inter- and intra-assay variations were 20% and 6%, respectively.
ObjectivesTo investigate cartilage tissue turnover in response to a supervised 12-week exercise-related joint loading training program followed by a 6-month period of unsupervised training in patients with knee osteoarthritis (OA). To study the difference in cartilage tissue turnover between high- and low-resistance training.MethodPatients with knee OA were randomized into either high-intensity or low-intensity resistance supervised training (two sessions per week) for 3 months and unsupervised training for 6 months. Blood samples were collected before and after the supervised training period and after the follow-up period. Biomarkers huARGS, C2M, and PRO-C2, quantifying cartilage tissue turnover, were measured by ELISA. Changes in biomarker levels over time within and between groups were analyzed using linear mixed models with baseline values as covariates.ResultshuARGS and C2M levels increased after training and at follow-up in both low- and high-intensity exercise groups. No changes were found in PRO-C2. The huARGS level in the high-intensity resistance training group increased significantly compared to the low-intensity resistance training group after resistance training (p = 0.029) and at follow-up (p = 0.003).ConclusionCartilage tissue turnover and cartilage degradation appear to increase in response to a 3-month exercise-related joint loading training program and at 6-month follow-up, with no evident difference in type II collagen formation. Aggrecan remodeling increased more with high-intensity resistance training than with low-intensity exercise.These exploratory biomarker results, indicating more cartilage degeneration in the high-intensity group, in combination with no clinical outcome differences of the VIDEX study, may argue against high-intensity training.