Carnitine/choline acyltransferases play diverse roles in energy metabolism and neuronal signalling. Our knowledge of their evolutionary relationships, important for functional understanding, is incomplete. Therefore, we aimed to determine the evolutionary relationships of these eukaryotic transferases. We performed extensivephylogenetic and intron position analyses. We found that mammalian intramitochondrial CPT2 is most closely related to cytosolic yeast carnitine transferases (Sc-YAT1 and 2), whereas the other members of the family are related to intraorganellar yeast Sc-CAT2. Therefore, the cytosolically active CPT1 more closely resembles intramitochondrial ancestors than CPT2. The choline acetyltransferase is closely related to carnitine acetyltransferase and shows lower evolutionary rates than long chain acyltransferases. In the CPT1 family several duplications occurred during animal radiation, leading to the isoforms CPT1A, CPT1B and CPT1C. In addition, we found five CPT1-like genes in Caenorhabditis elegans that strongly group to the CPT1 family. The long branch leading to mammalian brain isoform CPT1C suggests that either strong positive or relaxed evolution has taken place on this node. The presented evolutionary delineation of carnitine/choline acyltransferases adds to current knowledge on their functions and provides tangible leads for further experimental research.
DOCUMENT
This paper introduces a novel distributed algorithm designed to optimize the deployment of access points within Mobile Ad Hoc Networks (MANETs) for better service quality in infrastructure less environments. The algorithm operates based on local, independent execution by each network node, thus ensuring a high degree of scalability and adaptability to changing network conditions. The primary focus is to match the spatial distribution of access points with the distribution of client devices while maintaining strong connectivity to the network root. Using autonomous decision-making and choreographed path-planning, this algorithm bridges the gap between demand-responsive network service provision and the maintenance of crucial network connectivity links. The assessment of the performance of this approach is motivated by using numerical results generated by simulations.
DOCUMENT
Analyzing historical decision-related data can help support actual operational decision-making processes. Decision mining can be employed for such analysis. This paper proposes the Decision Discovery Framework (DDF) designed to develop, adapt, or select a decision discovery algorithm by outlining specific guidelines for input data usage, classifier handling, and decision model representation. This framework incorporates the use of Decision Model and Notation (DMN) for enhanced comprehensibility and normalization to simplify decision tables. The framework’s efficacy was tested by adapting the C4.5 algorithm to the DM45 algorithm. The proposed adaptations include (1) the utilization of a decision log, (2) ensure an unpruned decision tree, (3) the generation DMN, and (4) normalize decision table. Future research can focus on supporting on practitioners in modeling decisions, ensuring their decision-making is compliant, and suggesting improvements to the modeled decisions. Another future research direction is to explore the ability to process unstructured data as input for the discovery of decisions.
MULTIFILE
Peer-to-peer (P2P) energy trading has been recognized as an important technology to increase the local self-consumption of photovoltaics in the local energy system. Different auction mechanisms and bidding strategies haven been investigated in previous studies. However, there has been no comparatively analysis on how different market structures influence the local energy system’s overall performance. This paper presents and compares two market structures, namely a centralized market and a decentralized market. Two pricing mechanisms in the centralized market and two bidding strategies in the decentralized market are developed. The results show that the centralized market leads to higher overall system self-consumption and profits. In the decentralized market, some electricity is directly sold to the grid due to unmatchable bids and asks. Bidding strategies based on the learning algorithm can achieve better performance compared to the random method.
DOCUMENT
The aeronautical industry is still under expansion in spite of the problems it is facing due to the increase in oil prices, limited capacity, and novel regulations. The expansion trends translate into problems at different locations within an airport system and are more evident when the resources to cope with the demand are limited or are reaching to theirs limits. In the check-in areas they are appreciated as excessive waiting times which in turn are appreciated by the customers as bad service levels. The article presents a novel methodology that combines an evolutionary algorithm and simulation in order to give the best results taking into account not only the mandatory hard and soft rules determined by the internal policies of an airport terminal but also the quality indicators which are very difficult to include using an abstract representation. The evolutionary algorithm is developed to satisfy the different mandatory restrictions for the allocation problem such as minimum and maximum number of check-in desks per flight, load balance in the check-in islands, opening times of check-in desks and other restrictions imposed by the level of service agreement. Once the solutions are obtained, a second evaluation is performed using a simulation model of the terminal that takes into account the stochastic aspects of the problem such as arriving profiles of the passengers, opening times physical configurations of the facility among other with the objective to determine which allocation is the most efficient in real situations in order to maintain the quality indicators at the desired level.
DOCUMENT
Airport management is regularly challenged by the task of assigning flights to existing parking positions in the most efficient way while complying with existing policies, restrictions and capacity limitations. However, such process is frequently disrupted by various events, affecting punctuality of airline operations. This paper describes an innovative approach for obtaining an efficient stand assignment considering the stochastic nature of airport environment. Furthermore, the presented methodology combines benefits of Bayesian modelling and metaheuristics for generating solutions that are more robust to airport flight schedule perturbations. In addition, this paper illustrates that the application of the presented methodology combined with simulation provides a valuable tool for assessing the robustness of the developed stand assignment to flight delays.
DOCUMENT
Lectorale rede waarin wordt ingegaan op de manier waarop de mens nu binnen zijn natuurlijke omgeving functioneert. Dit wordt getypeerd als een ‘mismatch’. Tegelijkertijd is de lector er ook van overtuigd dat de technologie uiteindelijk zorgt voor een beter leven.
DOCUMENT
This study tackles the gate allocation problem (GAP) at the airport terminal, considering the current covid-19 pandemic restrictions. The GAP has been extensively studied by the research community in the last decades, as it represents a critical factor that determines an airport's capacity. Currently, the airport passenger terminal operations have been redesigned to be aligned and respect the covid-19 regulation worldwide. This provides operators with new challenges on how to handle the passengers inside the terminal. The purpose of this study is to come up with an efficient gate allocator that considers potential issues derived by the current pandemic, i.e., avoid overcrowded areas. A sim-opt approach has been developed where an evolutionary algorithm (EA) is used in combination with a dynamic passenger flow simulation model to find a feasible solution. The EA aims to find a (sub)optimal solution for the GAP, while the simulation model evaluates its efficiency and feasibility in a real-life scenario. To evaluate the potential of the Opt-Sim approach, it has been applied to a real airport case study.
DOCUMENT
Summary: Xpaths is a collection of algorithms that allow for the prediction of compound-induced molecular mechanisms of action by integrating phenotypic endpoints of different species; and proposes follow-up tests for model organisms to validate these pathway predictions. The Xpaths algorithms are applied to predict developmental and reproductive toxicity (DART) and implemented into an in silico platform, called DARTpaths.
DOCUMENT
Phylogenetic patterns show the presence or absence of certain genes in a set of full genomes derived from different species. They can also be used to determine sets of genes that occur only in certain evolutionary branches. Previously, we presented a database named PhyloPat which allows the complete Ensembl gene database to be queried using phylogenetic patterns. Here, we describe an updated version of PhyloPat which can be queried by an improved web server. We used a single linkage clustering algorithm to create 241 697 phylogenetic lineages, using all the orthologies provided by Ensembl v49. PhyloPat offers the possibility of querying with binary phylogenetic patterns or regular expressions, or through a phylogenetic tree of the 39 included species. Users can also input a list of Ensembl, EMBL, EntrezGene or HGNC IDs to check which phylogenetic lineage any gene belongs to. A link to the FatiGO web interface has been incorporated in the HTML output. For each gene, the surrounding genes on the chromosome, color coded according to their phylogenetic lineage can be viewed, as well as FASTA files of the peptide sequences of each lineage. Furthermore, lists of omnipresent, polypresent, oligopresent and anticorrelating genes have been included. PhyloPat is freely available at http://www.cmbi.ru.nl/phylopat. © 2008 The Author(s).
DOCUMENT