Considering activity level propositions in the evaluation of forensic biology findings is becoming more common place. There are increasing numbers of publications demonstrating different transfer mechanisms that can occur under a variety of circumstances. Some of these publications have shown the possibility of DNA transfer from site to site on an exhibit, for instance as a result of packaging and transport. If such a possibility exists, and the case circumstances are such that the area on an exhibit where DNA is present or absent is an observation that is an important diagnostic characteristic given the propositions, then site to site transfer should be taken into account during the evaluation of observations. In this work we demonstrate the ways in which site to site transfer can be built into Bayesian networks when carrying out activity level evaluations of forensic biology findings. We explore the effects of considering qualitative vs quantitative categorisation of DNA results. We also show the importance of taking into account multiple individual’s DNA being transferred (such as unknown or wearer DNA), even if the main focus of the evaluation is the activity of one individual.
DOCUMENT
Active antifungal packaging is a technological solution for reducing the postharvest losses of fruits and vegetables associated with phytopathogens. Anthracnose (Colletotrichum gloeosporioides) is the principal fungus that causes post-harvest avocado fruit decay. In this study, antifungal sachets filled with oregano oil-starch capsules were prepared, and their active effects were demonstrated on Hass avocado fruits. Oregano oil (31 % of carvacrol) was encapsulated with corn starch by spray drying. Tyvek sachets (4 × 4 cm) filled with 80 (T1) and 160 mg (T2) of oregano oil-starch capsules (99.35 ± 1.86 mg g − 1) were fabricated. The antifungal effects of the sachets were tested in vitro and in vivo using a humidity chamber (90–95 % relative humidity (RH)) on fruits inoculated with anthracnose. The results showed that T1 and T2 inhibited 75.21 ± 2.81 and 100 % in vitro growth of anthracnose at 25 °C for 12 days. Furthermore, Hass avocado fruits stored in a humidity chamber at 25 °C for 6 days showed that only T2 significantly (p < 0.05) reduced the area of lesion produced by artificial inoculation of Hass avocado fruits with anthracnose. On average, the lesion area in the Hass avocado fruits treated with T2 was 13.94 % smaller than that in the control fruit.
MULTIFILE