People in western countries spend approximately 90% of their time indoors. This severely affects their health (WHO 2013; Klepeis et al. 2001). The health risks are exacerbated if people travel between indoor spaces by car or public transport. Buildings on streets specifically designed to create a human scale and connected with the street-space can potentially invite people to walk and enhance their engagement with their surroundings (O’Mara 2019; Ewing et al. 2013). Since the 1960s, influential empirical studies have raised awareness of the walkability of streets (e.g. Jacobs 2008) but reliable evidence on the effectiveness of applied design solutions remains scarce (Spanjar & Suurenbroek 2020). This eye-tracking study focused on the visual ‘scanning’ of streetscapes and people’s appreciation of applied design principles. The aim was to gather together lessons learned from a variety of streetscapes in cities around the world and use them to inform the design of new developments in the Netherlands. Google Street View was used to select 19 images of streets in high-density environments with human-scale attributes in their façades and street-spaces. They were presented in a randomized order in a laboratory setting to 40 participants, who viewed them for 5 seconds. The participants’ visual explorative behaviour was recorded with advanced eye-tracking technology. A survey recorded their overall appreciation of the scenes and mouse-tracking collated their specific areas of interest (see fig. 1). The comparative analysis of the participants’ aggregated eye-fixation images together with the supplementary methods suggests that certain attributes for creating a human scale catch the eye in the first few seconds and are highly appreciated. These include the variety of a street’s façades, a street’s enclosedness, and the level of detail in the transition zone between the private ground floor and the public street (see fig. 2). Green features are particularly valued and might have important restorative qualities for people who spend most of their time indoors (Kaplan 1995; Ulrich 1984). Future research should focus on the design of façades and the street-space itself, taking people’s indoor lives and related stress levels as a starting point.
DOCUMENT
People in western countries spend approximately 90% of their time indoors. This severely affects their health (WHO 2013; Klepeis et al. 2001). The health risks are exacerbated if people travel between indoor spaces by car or public transport. Buildings on streets specifically designed to create a human scale and connected with the street-space can potentially invite people to walk and enhance their engagement with their surroundings (O’Mara 2019; Ewing et al. 2013). Since the 1960s, influential empirical studies have raised awareness of the walkability of streets (e.g. Jacobs 2008) but reliable evidence on the effectiveness of applied design solutions remains scarce (Spanjar & Suurenbroek 2020). This eye-tracking study focused on the visual ‘scanning’ of streetscapes and people’s appreciation of applied design principles. The aim was to gather together lessons learned from a variety of streetscapes in cities around the world and use them to inform the design of new developments in the Netherlands. Google Street View was used to select 19 images of streets in high-density environments with human-scale attributes in their façades and street-spaces. They were presented in a randomized order in a laboratory setting to 40 participants, who viewed them for 5 seconds. The participants’ visual explorative behaviour was recorded with advanced eye-tracking technology. A survey recorded their overall appreciation of the scenes and mouse-tracking collated their specific areas of interest (see fig. 1). The comparative analysis of the participants’ aggregated eye-fixation images together with the supplementary methods suggests that certain attributes for creating a human scale catch the eye in the first few seconds and are highly appreciated. These include the variety of a street’s façades, a street’s enclosedness, and the level of detail in the transition zone between the private ground floor and the public street (see fig. 2). Green features are particularly valued and might have important restorative qualities for people who spend most of their time indoors (Kaplan 1995; Ulrich 1984). Future research should focus on the design of façades and the street-space itself, taking people’s indoor lives and related stress levels as a starting point.
DOCUMENT
Doelstelling: In kaart brengen van de risicofactoren voor het ontwikkelen van binoculaire diplopie na conventionele monovisie door middel van contactlenzen of refractiechirurgie bij presbyopen. Methode: Voor deze literatuurstudie is in maart 2017 gezocht in databanken Pubmed, ScienceDirect en Google Scholar. Artikelen zijn geïncludeerd als binoculaire diplopie door monovisie wordt beschreven. Alle patiënten die worden weergegeven in deze artikelen zijn ouder dan 40 jaar en hebben monovisie door middel van contactlenzen of refractiechirurgie. De resultaten beschrijven de oorzaken van de binoculaire diplopie, de voorgeschiedenis van de patiënt met betrekking tot strabismus en de hoogte van additie. Onderscheid wordt gemaakt tussen contactlensdragers en patiënten die refractiechirurgie hebben ondergaan. Resultaten: In deze literatuurstudie zijn zes artikelen verwerkt. Uit deze artikelen zijn 35 patiënten met binoculaire diplopie meegenomen in dit onderzoek, vijftien patiënten met contactlens geïnduceerde monovisie en twintig patiënten met refractiechirurgie geïnduceerde monovisie. De oorzaken van binoculaire diplopie (decompensatie van een heteroforie, een intermitterend strabismus die constant wordt, een verworven heterotropie, decompensatie van een N IV parese en fixation switch diplopie) geven geen grote verschillen in aantal patiënten. Een additie hoger dan twee dioptrie komt meer voor in deze patiëntengroep met binoculaire diplopie dan een lagere additie. Een positieve voorgeschiedenis met betrekking tot strabismus komt meer voor dan een negatieve voorgeschiedenis. Relevante verschillen tussen contactlensdragers en patiënten die refractiechirurgie hebben ondergaan zijn niet gevonden. Conclusie: Vanwege het gebrek aan consistente data is meer onderzoek nodig voor significante resultaten.
DOCUMENT
The accelerated densification of Western European cities driven by economic growth has major spatial implications for their overall livability. Often, new homes must be built within an existing urban fabric, creating higher density environments. However, the impact on the experience of these high-density environments at eye level remains unstudied and unknown. This chapter reviews two experiments that sought to understand the unconscious reception of streetscapes using eye-tracking technology to investigate the sequence of users’ (visual) experience, their behavior and perception. The research project seeks to establish more ‘evidence-based’ design guidelines for streetscapes in high-rise urban settings.This chapter reviews two experiments that sought to understand the unconscious reception of streetscapes using eye-tracking technology to investigate the sequence of users’ experience, their behavior and perception. Eye-tracking results of Experiment 1 show that the movement of pedestrians, cyclists and cars crossing the street created the most eye fixation for most participants. In general, the eye-tracking results from Experiment 2 show that participants’ eyes followed the length of the facades toward the end of the street and the horizon. The preliminary results suggest that the assessed design principles ‘Active ground floor’ and ‘Ornate facades’ might be important factors in predicting dominant eye patterns. The chapter explores the application of eye-tracking technology in urban design to gain a deeper understanding of the physical-behavioral interrelationship of streetscapes in European high-density built environments. The accelerated densification of Western European cities driven by economic growth has major spatial implications for their overall livability.
DOCUMENT
In this study, we examined the effects of a defender contesting jump shots on performance and gaze behaviors of basketball players taking jump shots. Thirteen skilled youth basketball players performed 48 shots from about 5 m from the basket; 24 uncontested and 24 contested. The participants wore mobile eye tracking glasses to measure their gaze behavior. As expected, an approaching defender trying to contest the shot led to significant changes in movement execution and gaze behavior including shorter shot execution time, longer jump time, longer ball flight time, later final fixation onset, and longer fixation on the defender. Overall, no effects were found for shooting accuracy. However, the effects on shot accuracy were not similar for all participants: six participants showed worse performance and six participants showed better performance in the contested compared to the uncontested condition. These changes in performance were accompanied by differences in gaze behavior. The participants with worse performance showed shorter absolute and relative final fixation duration and a tendency for an earlier final fixation offset in the contested condition compared to the uncontested condition, whereas gaze behavior of the participants with better performance for contested shots was relatively unaffected. The results confirm that a defender contesting the shot is a relevant constraint for basketball shooting suggesting that representative training designs should also include contested shots, and more generally other constraints that are representative of the actual performance setting such as time or mental pressure.
DOCUMENT
Vertical urbanisation is perceived as necessary to accommodate a growing population but is associated with severe risks for human well-being. It requires a profound understanding of how archi-tectural designs can ensure visually readable and liveable environments before it has been built. How-ever, current digital representation techniques fail to address the diverse interests of non-experts. Emerging biometric technologies may deliver the missing user information to involve (future) inhabit-ants at different stages of the planning process. The study aims to gain insight into how non-experts (visually) experience 3D city visualizations of designed urban areas. In two laboratory studies, univer-sity students were randomly assigned to view a set of the same level of detail images from one of two planned urban area developments in the Netherlands. Using eye-tracking technology, the visual behav-iour metrics of fixation count and duration and general eye-movement patterns were recorded for each image, followed by a short survey. The results show how visual behaviour and perception are remark-ably similar across different detail levels, implying that 3D visualizations of planned urban develop-ments can be examined by non-experts much earlier in the design process than previously thought.
DOCUMENT
Over the next 10 years, the City of Amsterdam plans to develop major housing schemes provide 90,000 new homes within the existing urban fabric. At the same time, an urban renewal program is being launched to revitalize the most deprived neighbourhoods. Together, these challenges call for more evidence based designprinciples to secure liveable places. Recent development in neuroscience, provides innovative tools to examine in a measurable, cause-effect way, the relationships between the physical fabric, users’ (visual) experience and their behavior in public spaces. In neuroscience, eye-tracking technology (ET) complements brain and behavioral measures (for overview see Eckstein et al. 2017). ET is already used to evaluate the spatial orienting of attention, behavioral response and emotional and cognitive impact in neuroscience, psychology and market research (Popa et al. 2015). ET may also radically change the way we (re)design and thus, experience cities (Sita et al. 2016; Andreani 2017). Until now, eye-tracking pilot studies collected eye fixation patterns of architecture using images in a lab-setting (Lebrun 2016).In our research project Sensing Streetscapes, we take eye-tracking outdoors and explore the potential ET may offer for city design. In collaboration with the municipality of Amsterdam and the local community, the H-neighborhood is used as a single case study. The main focus for urban renewal lies in the “transition-spaces”. They connect the neighborhood with the rapidly developing adjacent areas and are vital for improving the weak social-economic status. The commonly used design principles are validated (Alexander et al. 1977; Gehl 2011, 2014; Pallasmaa 2012) and the consistency of ET is tested, alongside (walk along) interviews and behavioral observations. In the next phase, the data will be analyzed by a panel of applied psychologists and urban designers. The initial results provide valuable lessons for the use of eye-tracking in urban design research. For example, a visual pattern analysis offers more accurate images of the spatial key-elements that matter when moving through transition spaces. More sensory-based city design research is needed to gather a full understanding of the relationships between the configuration of space, users’ (visual) experience, behavioral responses and in turn, perceptual decision making.
DOCUMENT
In daily interaction with horses, humans primarily rely on facial expression as a non-verbal equine cue for emotional information. Difficulties in correctly recognizing these signals might arise due to the species-specificity of facial cues, possibly leading to diminished equine welfare and health. This study aimed to explore human visual search patterns when assessing equine facial expressions indicative of various pain levels, utilizing eye-tracking technology. Hundred and eight individuals (N = 108), classified into three groups (affinity with horses (N = 60), pet owners with no affinity with horses (N = 32), and individuals with no affinity with animals (N = 16)) participated in the study; with their eye movements recorded using eye tracking glasses they evaluated four photos of horses with different levels of pain. Error score, calculated by comparing participant scores to Gold Standard Visual Analogue Score levels and fixation metrics (number of fixations and duration of fixations) were analysed across the four photos, participant group and Areas of Interest (AOIs): eyes, ears, nostrils, and mouth. Statistical analysis utilized linear mixed models. Highlighting the critical role of the eyes as key indicators of pain, findings showed that the eyes played a significant role in assessing equine emotional states, as all groups focused on them for a longer time and more frequently compared to other facial features. Also, participants showed a consistent pattern in how they looked at a horse's face, first focusing on the eyes, then the ears, and finally the nose/mouth region, indicating a horse-specific pattern. Moderate pain was assessed with similar accuracy across all groups, indicating that these signals are broadly recognizable. Nevertheless, non-equestrians faced challenges with recognizing the absence of pain, possibly highlighting the role of experience in interpreting subtle equine expressions. The study's limitations, such as variability in assessment conditions may have impacted findings. Future work could further investigate why humans follow this visual search pattern and whether they recognize the significance of a horse's ears. Additionally, emphasis should be placed on developing targeted training interventions to improve equine pain recognition, possibly benefiting equine welfare and health.
LINK
Many students persistently misinterpret histograms. This calls for closer inspection of students’ strategies when interpreting histograms and case-value plots (which look similar but are diferent). Using students’ gaze data, we ask: How and how well do upper secondary pre-university school students estimate and compare arithmetic means of histograms and case-value plots? We designed four item types: two requiring mean estimation and two requiring means comparison. Analysis of gaze data of 50 students (15–19 years old) solving these items was triangulated with data from cued recall. We found five strategies. Two hypothesized most common strategies for estimating means were confirmed: a strategy associated with horizontal gazes and a strategy associated with vertical gazes. A third, new, count-and-compute strategy was found. Two more strategies emerged for comparing means that take specific features of the distribution into account. In about half of the histogram tasks, students used correct strategies. Surprisingly, when comparing two case-value plots, some students used distribution features that are only relevant for histograms, such as symmetry. As several incorrect strategies related to how and where the data and the distribution of these data are depicted in histograms, future interventions should aim at supporting students in understanding these concepts in histograms. A methodological advantage of eye-tracking data collection is that it reveals more details about students’ problem-solving processes than thinking-aloud protocols. We speculate that spatial gaze data can be re-used to substantiate ideas about the sensorimotor origin of learning mathematics.
LINK
Graphs are ubiquitous. Many graphs, including histograms, bar charts, and stacked dotplots, have proven tricky to interpret. Students’ gaze data can indicate students’ interpretation strategies on these graphs. We therefore explore the question: In what way can machine learning quantify differences in students’ gaze data when interpreting two near-identical histograms with graph tasks in between? Our work provides evidence that using machine learning in conjunction with gaze data can provide insight into how students analyze and interpret graphs. This approach also sheds light on the ways in which students may better understand a graph after first being presented with other graph types, including dotplots. We conclude with a model that can accurately differentiate between the first and second time a student solved near-identical histogram tasks.
DOCUMENT