OBJECTIVES: To determine the risk of first unplanned all-cause readmission and mortality of patients ≥70 years with acute myocardial infarction (AMI) or heart failure (HF) and to explore which effects of baseline risk factors vary over time.METHODS: A retrospective cohort study was performed on hospital and mortality data (2008) from Statistics Netherlands including 5,175 (AMI) and 9,837 (HF) patients. We calculated cumulative weekly incidences for first unplanned all-cause readmission and mortality during 6 months post-discharge and explored patient characteristics associated with these events.RESULTS: At 6 months, 20.4% and 9.9% (AMI) and 24.6% and 22.4% (HF) of patients had been readmitted or had died, respectively. The highest incidences were found in week 1. An increased risk for 14-day mortality after AMI was observed in patients who lived alone (hazard ratio (HR) 1.57, 95% confidence interval (CI) 1.01-2.44) and within 30 and 42 days in patients with a Charlson Comorbidity Index ≥3. In HF patients, increased risks for readmissions within 7, 30 and 42 days were found for a Charlson Comorbidity Index ≥3 and within 42 days for patients with an admission in the previous 6 months (HR 1.42, 95% CI 1.12-1.80). Non-native Dutch HF patients had an increased risk of 14-day mortality (HR 1.74, 95% CI 1.09-2.78).CONCLUSION: The risk of unplanned readmission and mortality in older AMI and HF patients was highest in the 1st week post-discharge, and the effect of some risk factors changed over time. Transitional care interventions need to be provided as soon as possible to prevent early readmission and mortality.
Background—Self-management interventions are widely implemented in care for patients with heart failure (HF). Trials however show inconsistent results and whether specific patient groups respond differently is unknown. This individual patient data meta-analysis assessed the effectiveness of self-management interventions in HF patients and whether subgroups of patients respond differently. Methods and Results—Systematic literature search identified randomized trials of selfmanagement interventions. Data of twenty studies, representing 5624 patients, were included and analyzed using mixed effects models and Cox proportional-hazard models including interaction terms. Self-management interventions reduced risk of time to the combined endpoint HF-related all-0.71- in Conclusions—This study shows that self-management interventions had a beneficial effect on time to HF-related hospitalization or all-cause death, HF-related hospitalization alone, and elicited a small increase in HF-related quality of life. The findings do not endorse limiting selfmanagement interventions to subgroups of HF patients, but increased mortality in depressed patients warrants caution in applying self-management strategies in these patients.
Denim Democracy from the Alliance for Responsible Denim (ARD) is an interactive exhibition that celebrates the journey and learning of ARD members, educates visitors about sustainable denim and highlights how companies collaborate together to achieve results. Through sight, sound and tactile sensations, the visitor experiences and fully engages sustainable denim production. The exhibition launches in October 2018 in Amsterdam and travels to key venues and locations in the Netherlands until April 2019. As consumers, we love denim but the denim industry, like other sub-sectors in the textile, apparel and footwear industries, faces many complex sustainability challenges and has been criticized for its polluting and hazardous production practices. The Alliance for Responsible Denim project brought leading denim brands, suppliers and stakeholders together to collectively address these issues and take initial steps towards improving the ecological sustainability impact of denim production. Sustainability challenges are considered very complex and economically undesirable for individual companies to address alone. In denim, small and medium sized denim firms face specific challenges, such as lower economies of scale and lower buying power to affect change in practices. There is great benefit in combining denim companies' resources and knowledge so that collective experimentation and learning can lift the sustainability standards of the industry and lead to the development of common standards and benchmarks on a scale that matters. If meaningful, transformative industrial change is to be made, then it calls for collaboration between denim industry stakeholders that goes beyond supplier-buyer relations and includes horizontal value chain collaboration of competing large and small denim brands. However collaboration between organizations, and especially between competitors, is highly complex and prone to failure. The research behind the Alliance for Responsible Denim project asked a central research question: how do competitors effectively collaborate together to create common, industry standards on resource use and benchmarks for improved ecological sustainability? To answer this question, we used a mixed-method, action research approach. The Alliance for Responsible Denim project mobilized and facilitated denim brands to collectively identify ways to reduce the use of water and chemicals in denim production and then aided them to implement these practices individually in their respective firms.
The Dutch main water systems face pressing environmental, economic and societal challenges due to climatic changes and increased human pressure. There is a growing awareness that nature-based solutions (NBS) provide cost-effective solutions that simultaneously provide environmental, social and economic benefits and help building resilience. In spite of being carefully designed and tested, many projects tend to fail along the way or never get implemented in the first place, wasting resources and undermining trust and confidence of practitioners in NBS. Why do so many projects lose momentum even after a proof of concept is delivered? Usually, failure can be attributed to a combination of eroding political will, societal opposition and economic uncertainties. While ecological and geological processes are often well understood, there is almost no understanding around societal and economic processes related to NBS. Therefore, there is an urgent need to carefully evaluate the societal, economic, and ecological impacts and to identify design principles fostering societal support and economic viability of NBS. We address these critical knowledge gaps in this research proposal, using the largest river restoration project of the Netherlands, the Border Meuse (Grensmaas), as a Living Lab. With a transdisciplinary consortium, stakeholders have a key role a recipient and provider of information, where the broader public is involved through citizen science. Our research is scientifically innovative by using mixed methods, combining novel qualitative methods (e.g. continuous participatory narrative inquiry) and quantitative methods (e.g. economic choice experiments to elicit tradeoffs and risk preferences, agent-based modeling). The ultimate aim is to create an integral learning environment (workbench) as a decision support tool for NBS. The workbench gathers data, prepares and verifies data sets, to help stakeholders (companies, government agencies, NGOs) to quantify impacts and visualize tradeoffs of decisions regarding NBS.
In order to stay competitive and respond to the increasing demand for steady and predictable aircraft turnaround times, process optimization has been identified by Maintenance, Repair and Overhaul (MRO) SMEs in the aviation industry as their key element for innovation. Indeed, MRO SMEs have always been looking for options to organize their work as efficient as possible, which often resulted in applying lean business organization solutions. However, their aircraft maintenance processes stay characterized by unpredictable process times and material requirements. Lean business methodologies are unable to change this fact. This problem is often compensated by large buffers in terms of time, personnel and parts, leading to a relatively expensive and inefficient process. To tackle this problem of unpredictability, MRO SMEs want to explore the possibilities of data mining: the exploration and analysis of large quantities of their own historical maintenance data, with the meaning of discovering useful knowledge from seemingly unrelated data. Ideally, it will help predict failures in the maintenance process and thus better anticipate repair times and material requirements. With this, MRO SMEs face two challenges. First, the data they have available is often fragmented and non-transparent, while standardized data availability is a basic requirement for successful data analysis. Second, it is difficult to find meaningful patterns within these data sets because no operative system for data mining exists in the industry. This RAAK MKB project is initiated by the Aviation Academy of the Amsterdam University of Applied Sciences (Hogeschool van Amsterdan, hereinafter: HvA), in direct cooperation with the industry, to help MRO SMEs improve their maintenance process. Its main aim is to develop new knowledge of - and a method for - data mining. To do so, the current state of data presence within MRO SMEs is explored, mapped, categorized, cleaned and prepared. This will result in readable data sets that have predictive value for key elements of the maintenance process. Secondly, analysis principles are developed to interpret this data. These principles are translated into an easy-to-use data mining (IT)tool, helping MRO SMEs to predict their maintenance requirements in terms of costs and time, allowing them to adapt their maintenance process accordingly. In several case studies these products are tested and further improved. This is a resubmission of an earlier proposal dated October 2015 (3rd round) entitled ‘Data mining for MRO process optimization’ (number 2015-03-23M). We believe the merits of the proposal are substantial, and sufficient to be awarded a grant. The text of this submission is essentially unchanged from the previous proposal. Where text has been added – for clarification – this has been marked in yellow. Almost all of these new text parts are taken from our rebuttal (hoor en wederhoor), submitted in January 2016.