Elevated plantar foot pressures during gait in diabetic patients with neuropathy have been suggested to result, among other factors, from the distal displacement of sub-metatarsal head (MTH) fat-pad cushions caused by to claw/hammer toe deformity. The purpose of this study was to quantitatively assess these associations. Thirteen neuropathic diabetic subjects with claw/hammer toe deformity, and 13 age- and gender-matched neuropathic diabetic controls without deformity, were examined. Dynamic barefoot plantar pressures were measured with an EMED pressure platform. Peak pressure and force-time integral for each of 11 foot regions were calculated. Degree of toe deformity and the ratio of sub-MTH to sub-phalangeal fat-pad thickness (indicating fat-pad displacement) were measured from sagittal plane magnetic resonance images of the foot. Peak pressures at the MTHs were significantly higher in the patients with toe deformity (mean 626 (SD 260) kPa) when compared with controls (mean 363 (SD 115) kPa, Po0.005). MTH peak pressure was significantly correlated with degree of toe deformity (r= 0.74) and with fat-pad displacement (r= 0.71) (Po0.001). The ratio of force-time integral in the toes and the MTHs (toe-loading index) was significantly lower in the group with deformity. These results show that claw/hammer toe deformity is associated with a distal-to-proximal transfer of load in the forefoot and elevated plantar pressures at the MTHs in neuropathic diabetic patients. Distal displacement of the plantar fat pad is suggested to be the underlying mechanism in this association. These conditions increase the risk for plantar ulceration in these patients.
DOCUMENT
This study is part of the WHeelchair ExercisE and Lifestyle Study (WHEELS) project and aims to identify determinants of dietary behaviour in wheelchair users with spinal cord injury or lower limb amputation, from the perspectives of both wheelchair users and rehabilitation professionals. Results of focus groups with wheelchair users (n = 25) and rehabilitation professionals (n = 11) are presented using an integrated International Classification of Functioning, Disability and Health and Attitude, Social influence and self-Efficacy model as theoretical framework.
LINK
It is of utmost importance to collect organic waste from households as a separate waste stream. If collected separately, it could be used optimally to produce compost and biogas, it would not pollute fractions of materials that can be recovered from residual waste streams and it would not deteriorate the quality of some materials in residual waste (e.g. paper). In rural areas with separate organic waste collection systems, large quantities of organic waste are recovered. However, in the larger cities, only a small fraction of organic waste is recovered. In general, citizens dot not have space to store organic waste without nuisances of smell and/or flies. As this has been the cause of low organic waste collection rates, collection schemes have been cut, which created a further negative impact. Hence, additional efforts are required. There are some options to improve the organic waste recovery within the current system. Collection schemes might be improved, waste containers might be adapted to better suit the needs, and additional underground organic waste containers might be installed in residential neighbourhoods. There are persistent stories that separate organic waste collection makes no sense as the collectors just mix all municipal solid waste after collection, and incinerate it. Such stories might be fuelled by the practice that batches of contaminated organic waste are indeed incinerated. Trust in the system is important. Food waste is often regarded as unrein. Users might hate to store food waste in their kitchen that could attract insects, or the household pets. Hence, there is a challenge for socio-psychological research. This might also be supported by technology, e.g. organic waste storage devices and measures to improve waste separation in apartment buildings, such as separate chutes for waste fractions. Several cities have experimented with systems that collect organic wastes by the sewage system. By using a grinder, kitchen waste can be flushed into the sewage system, which in general produces biogas by the fermentation of sewage sludge. This is only a good option if the sewage is separated from the city drainage system, otherwise it might create water pollution. Another option might be to use grinders, that store the organic waste in a tank. This tank could be emptied regularly by a collection truck. Clearly, the preferred option depends on local conditions and culture. Besides, the density of the area, the type of sewage system and its biogas production, and the facilities that are already in place for organic waste collection are important parameters. In the paper, we will discuss the costs and benefits of future organic waste options and by discussing The Hague as an example.
DOCUMENT