Autonomous learning behavior is an important skill for students, but they often do not master it sufficiently. We investigated the potential of nudging as a teaching strategy in tertiary education to support three important autonomous learning behaviors: planning, preparing for class, and asking questions. Nudging is a strategy originating from behavioral economics used to influence behavior by changing the environment, and consists of altering the choice environment to steer human behavior. In this study, three nudges were designed by researchers in co-creation with teachers. A video booth to support planning behavior (n = 95), a checklist to support class preparation (n = 148), and a goal-setting nudge to encourage students to ask questions during class (n = 162) were tested in three field experiments in teachers’ classrooms with students in tertiary education in the Netherlands. A mixed-effects model approach revealed a positive effect of the goal-setting nudge on students’ grades and a marginal positive effect on the number of questions asked by students. Additionally, evidence for increased self-reported planning behavior was found in the video booth group—but no increase in deadlines met. No significant effects were found for the checklist. We conclude that, for some autonomous learning behaviors, primarily asking questions, nudging has potential as an easy, effective teaching strategy.
MULTIFILE
We aim to understand the interaction between shifting organizational field logics and field actors’ responses to reconcile logic plurality and maintain legitimacy through business model innovation. Drawing on a multimethod, longitudinal field study in the fashion industry, we traced how de novo and incumbent firms integrate circular logics in business models (for sustainability) and uncover how productive tensions in field logics lead to experimental spaces for business model innovation. Our findings showed a shift in the discourse on circular logic that diverted attention and resources from materials innovation (e.g. recycling) to business model innovation (e.g. circular business models). By juxtaposing the degree of field logic tension and the degree of business model innovation, we derive four types of business model hybridization responses that actors engaged in to maintain legitimacy – constrained, limited, integrated, and expanded. Our study generates new insights on business models for sustainability as vehicles for organizational field change.
In diverse steden in Nederland wordt geëxperimenteerd in de ruimtelijkeontwikkeling. In vaste organisatorische vormen zoals Living Labs, Fab Labs,Urban Labs of Fieldlabs staan maatschappelijke vraagstukken centraal maarook worden ‘proeven’ gedaan met bijvoorbeeld regelvrije zones om in havensgemakkelijker functiemenging mogelijk te maken of circulaire economischeinitiatieven faciliterend aan te jagen.Het experiment lijkt haar definitieve entree gemaakt te hebben als planfiguur inde hedendaagse ruimtelijke ontwikkeling. De aandacht voor het experiment gaatveelal gepaard met hoopvolle verwachtingen over meer creatieve uitkomsten,onverwachte inzichten, en het radicaal ‘omdenken’ hoe in de systeemwereld wordtomgegaan met lokale problemen. Wat voegt het experiment toe als planningsstapin de ruimtelijke ontwikkeling?
LINK
Digital innovations in the field of immersive Augmented Reality (AR) can be a solution to offer adults who are mentally, physically or financially unable to attend sporting events such as premier league football a stadium and match experience. This allows them to continue to connect with their social networks. In the intended project, AR content will be further developed with the aim of evoking the stadium experience of home matches as much as possible. The extent to which AR enriches the experience is then tested in an experiment, in which the experience of a football match with and without AR enrichment is measured in a stadium setting and in a home setting. The experience is measured with physiological signals. In addition, a subjective experience measure is also being developed and benchmarked (the experience impact score). Societal issueInclusion and health: The joint experience of (top) sports competitions forms a platform for vulnerable adults, with a limited social capital, to build up and maintain the social networks that are so necessary for them. AR to fight against social isolation and loneliness.
The postdoc candidate, Giuliana Scuderi, will strengthen the connection between the research group Biobased Buildings (BB), (collaboration between Avans University of Applied Sciences and HZ University of Applied Sciences (HZ), and the Civil Engineering bachelor programme (CE) of HZ. The proposed research aims at deepening the knowledge about the mechanical properties of biobased materials for the application in the structural and infrastructural sectors. The research is relevant for the professional field, which is looking for safe and sustainable alternatives to traditional building materials (such as lignin asphalt, biobased panels for bridge constructions, etc.). The study of the mechanical behaviour of traditional materials (such as concrete and steel) is already part of the CE curriculum, but the ambition of this postdoc is that also BB principles are applied and visible. Therefore, from the first year of the programme, the postdoc will develop a biobased material science line and will facilitate applied research experiences for students, in collaboration with engineering and architectural companies, material producers and governmental bodies. Consequently, a new generation of environmentally sensitive civil engineers could be trained, as the labour market requires. The subject is broad and relevant for the future of our built environment, with possible connections with other fields of study, such as Architecture, Engineering, Economics and Chemistry. The project is also relevant for the National Science Agenda (NWA), being a crossover between the routes “Materialen – Made in Holland” and “Circulaire economie en grondstoffenefficiëntie”. The final products will be ready-to-use guidelines for the applications of biobased materials, a portfolio of applications and examples, and a new continuous learning line about biobased material science within the CE curriculum. The postdoc will be mentored and supervised by the Lector of the research group and by the study programme coordinator. The personnel policy and job function series of HZ facilitates the development opportunity.
The SPRONG-collaboration “Collective process development for an innovative chemical industry” (CONNECT) aims to accelerate the chemical industry’s climate/sustainability transition by process development of innovative chemical processes. The CONNECT SPRONG-group integrates the expertise of the research groups “Material Sciences” (Zuyd Hogeschool), “Making Industry Sustainable” (Hogeschool Rotterdam), “Innovative Testing in Life Sciences & Chemistry” and “Circular Water” (both Hogeschool Utrecht) and affiliated knowledge centres (Centres of Expertise CHILL [affiliated to Zuyd] and HRTech, and Utrecht Science Park InnovationLab). The combined CONNECT-expertise generates critical mass to facilitate process development of necessary energy-/material-efficient processes for the 2050 goals of the Knowledge and Innovation Agenda (KIA) Climate and Energy (mission C) using Chemical Key Technologies. CONNECT focuses on process development/chemical engineering. We will collaborate with SPRONG-groups centred on chemistry and other non-SPRONG initiatives. The CONNECT-consortium will generate a Learning Community of the core group (universities of applied science and knowledge centres), companies (high-tech equipment, engineering and chemical end-users), secondary vocational training, universities, sustainability institutes and regional network organizations that will facilitate research, demand articulation and professionalization of students and professionals. In the CONNECT-trajectory, four field labs will be integrated and strengthened with necessary coordination, organisation, expertise and equipment to facilitate chemical innovations to bridge the innovation valley-of-death between feasibility studies and high technology-readiness-level pilot plant infrastructure. The CONNECT-field labs will combine experimental and theoretical approaches to generate high-quality data that can be used for modelling and predict the impact of flow chemical technologies. The CONNECT-trajectory will optimize research quality systems (e.g. PDCA, data management, impact). At the end of the CONNECT-trajectory, the SPRONG-group will have become the process development/chemical engineering SPRONG-group in the Netherlands. We can then meaningfully contribute to further integrate the (inter)national research ecosystem to valorise innovative chemical processes for the KIA Climate and Energy.