The objective of this study is to investigate the heart rate (HR) accuracy measured at the wrist with the photoplethysmography (PPG) technique with a Fitbit Charge 2 (Fitbit Inc) in wheelchair users with spinal cord injury, how the activity intensity affects the HR accuracy, and whether this HR accuracy is affected by lesion level.
MULTIFILE
Data collected from fitness trackers worn by employees could be very useful for businesses. The sharing of this data with employers is already a well-established practice in the United States, and companies in Europe are showing an interest in the introduction of such devices among their workforces. Our argument is that employers processing their employees’ fitness trackers data is unlikely to be lawful under the General Data Protection Regulation (GDPR). Wearable fitness trackers, such as Fitbit and AppleWatch devices, collate intimate data about the wearer’s location, sleep and heart rate. As a result, we consider that they not only represent a novel threat to the privacy and autonomy of the wearer, but that the data gathered constitutes ‘health data’ regulated by Article 9. Processing health data, including, in our view, fitness tracking data, is prohibited unless one of the specified conditions in the GDPR applies. After examining a number of legitimate bases which employers can rely on, we conclude that the data processing practices considered do not comply with the principle of lawfulness that is central to the GDPR regime. We suggest alternative schema by which wearable fitness trackers could be integrated into an organization to support healthy habits amongst employees, but in a manner that respects the data privacy of the individual wearer.
MULTIFILE
Purpose: The purpose of this study was to validate optimized algorithm parameter settings for step count and physical behavior for a pocket worn activity tracker in older adults during ADL. Secondly, for a more relevant interpretation of the results, the performance of the optimized algorithm was compared to three reference applications Methods: In a cross-sectional validation study, 20 older adults performed an activity protocol based on ADL with MOXMissActivity versus MOXAnnegarn, activPAL, and Fitbit. The protocol was video recorded and analyzed for step count and dynamic, standing, and sedentary time. Validity was assessed by percentage error (PE), absolute percentage error (APE), Bland-Altman plots and correlation coefficients. Results: For step count, the optimized algorithm had a mean APE of 9.3% and a correlation coefficient of 0.88. The mean APE values of dynamic, standing, and sedentary time were 15.9%, 19.9%, and 9.6%, respectively. The correlation coefficients were 0.55, 0.91, and 0.92, respectively. Three reference applications showed higher errors and lower correlations for all outcome variables. Conclusion: This study showed that the optimized algorithm parameter settings can more validly estimate step count and physical behavior in older adults wearing an activity tracker in the trouser pocket during ADL compared to reference applications.
DOCUMENT
Wheelchair users with a spinal cord injury (SCI) or amputation generally lead an inactive lifestyle, associated with reduced fitness and health. Digital interventions and sport and lifestyle applications (E-platforms) may be helpful in achieving a healthy lifestyle. Despite the potential positive effects of E-platforms in the general population, no studies are known investigating the effects for wheelchair users and existing E-platforms can not be used to the same extent and in the same manner by this population due to differences in physiology, body composition, exercise forms and responses, and risk injury. It is, therefore, our aim to adapt an existing E-platform (Virtuagym) within this project by using existing data collections and new data to be collected within the project. To reach this aim we intend to make several relevant databases from our network available for analysis, combine and reanalyze these existing databases to adapt the existing E-platform enabling wheelchair users to use it, evaluate and improve the use of the adapted E-platform, evaluate changes in healthy active lifestyle parameters, fitness, health and quality of life in users of the E-platform (both wheelchair users and general population) and identify determinants of these changes, identify factors affecting transitions from an inactive lifestyle, through an intermediate level, to an athlete level, comparing wheelchair users with the general population, and comparing Dutch with Brazilian individuals. The analysis of large datasets of exercise and fitness data from various types of individuals with and without disabilities, collected over the last years both in the Netherlands and Brazil, is an innovative and potentially fruitful approach. It is expected that the comparison of e.g. wheelchair users in Amsterdam vs. Sao Paulo or recreative athletes vs. elite athletes provides new insight in the factors determining a healthy and active lifestyle.