Research finds that the global market value of cargo bikes will hit 2.4 billion euros by 2031. Analysts with Future Market Insights assessing the growth of cargo bikes have placed the parcel courier industry as a key buyer of electric cargo bikes, forecasting that 43 per cent of sales could go to this industry. This growth is driven by city logistics trends, particularly as studies emerge showing the high efficiency and cost saving of the cargo bike versus the delivery van. It will not solely be direct incentives that drive uptake, however. The policy that restricts motoring and emissions is expected to be a key driver for businesses that seek profitability, with three-wheeled electric cargo bikes making up nearly half the market. The advance of e-bike technology has seen a strong rise in market share for assisted cargo bikes, now accounting for a 73 per cent market share. Potentially limiting the growth is the legislation governing the output and range of electric cargo bikes (FMI, 2021).To deal with the issues of faster delivery, clean delivery (low/zero emission) and less space in dense cities, the light electric freight vehicle (LEFV) can be–and is used more and more as–an innovative solution. The way logistics in urban areas is organized is being challenged, as the global growth of cities leads to more jobs, more businesses and more residents. As a result, companies, workers, residents and visitors demand more goods and produce more waste. More space for logistics activities in and around cities is at odds with the growing need for accommodation for people living and working in cities. Book: Innovations in Transport: Success, Failure and Societal Impacts
The aim of this research/project is to investigate and analyze the opportunities and challenges of implementing AI technologies in general and in the transport and logistics sectors. Also, the potential impacts of AI at sectoral, regional, and societal scales that can be identified and chan- neled, in the field of transport and logistics sectors, are investigated. Special attention will be given to the importance and significance of AI adoption in the development of sustainable transport and logistics activities using intelligent and autonomous transport and cleaner transport modalities. The emphasis here is therefore on the pursuit of ‘zero emissions’ in transport and logistics at the urban/city and regional levels.Another goal of this study is to examine a new path for follow-up research topics related to the economic and societal impacts of AI technology and the adoption of AI systems at organizational and sectoral levels.This report is based on an exploratory/descriptive analysis and focuses mainly on the examination of existing literature and (empirical) scientific research publica- tions, previous and ongoing AI initiatives and projects (use cases), policy documents, etc., especially in the fields of transport and logistics in the Netherlands. It presents and discusses many aspects of existing challenges and opportunities that face organizations, activities, and individuals when adopting AI technology and systems.
PBL is the initiator of the Work Programme Monitoring and Management Circular Economy 2019-2023, a collaboration between CBS, CML, CPB, RIVM, TNO, UU. Holidays and mobility are part of the consumption domains that PBL researches, and this project aims to calculate the environmental gains per person per year of the various circular behavioural options for both holiday behaviour and daily mobility. For both behaviours, a range of typical (default) trips are defined and for each several circular option explored for CO2 emissions, Global warming potential and land use. The holiday part is supplied by the Centre for Sustainability, Tourism and Transport (CSTT) of the BUas Academy of Tourism (AfT). The mobility part is carried out by the Urban Intelligence professorship of the Academy for Built Environment and Logistics (ABEL).The research question is “what is the environmental impact of various circular (behavioural) options around 1) holidays and 2) passenger mobility?” The consumer perspective is demarcated as follows:For holidays, transportation and accommodation are included, but not food, attractions visited and holiday activitiesFor mobility, it concerns only the circular options of passenger transport and private means of transport (i.e. freight transport, business travel and commuting are excluded). Not only some typical trips will be evaluated, but also the possession of a car and its alternatives.For the calculations, we make use of public databases, our own models and the EAP (Environmental Analysis Program) model developed by the University of Groningen. BUAs projectmembers: Centre for Sustainability, Tourism and Transport (AT), Urban Intelligence (ABEL).
LEVV-LOGIC presenteert een voorstel voor onderzoek naar de inzet van lichte elektrische vrachtvoertuigen (LEVV’s) voor de levering van goederen in steden. In dit project ontwikkelen de Hogeschool van Amsterdam en Hogeschool Rotterdam samen met logistiek dienstverleners, verladers en voertuigaanbieders uit het mkb, netwerkorganisaties, kennisinstellingen en gemeenten nieuwe kennis over logistieke concepten en business modellen met LEVV met als doel de rendabele inzet van LEVV’s in stadslogistiek. De doelstelling komt voort uit een vraag van logistiek dienstverleners uit het mkb. Zij willen LEVV’s inzetten, maar weten niet hoe ze dit rendabel kunnen doen omdat de huidige logistieke processen in de keten afgestemd zijn op de inzet van bestel- en vrachtvoertuigen. Voor overstap naar LEVV’s dienen de logistieke processen anders georganiseerd te worden, want de voertuigen zijn kleiner in omvang en hebben een andere laad- en energievoorziening. Daarnaast is onvoldoende duidelijk voor welke stadslogistieke stromen LEVV’s geschikt zijn en aan welke technische eisen de voertuigen moeten voldoen. Verladers (verzenders van goederen) en voertuigaanbieders zijn actief betrokken bij de uitvoering van het onderzoek om afstemming met de marktvraag en de techniek te garanderen. De projectdeelnemers delen de ambitie om met LEVV’s een bijdrage te leveren aan regionale, nationale en Europese doelstellingen om stedelijk goederenvervoer efficiënter en schoner (“zero emissie”) te organiseren. Het project draagt hier aan bij door middel van vijf activiteiten. De deelnemers in LEVV-LOGIC: 1. onderzoeken de potentie van LEVV voor specifieke stadslogistieke stromen (waaronder food-, webwinkel-, en facilitaire leveringen); 2. ontwerpen nieuwe logistieke concepten met LEVV voor de distributie van goederen van verzender naar ontvanger; 3. vertalen logistieke vereisten naar technische ontwerpen en aanpassingen aan bestaande LEVV’s; 4. experimenten met nieuwe LEVV-concepten in de praktijk; 5. ontwikkelen schaalbare business modellen met LEVV’s. Het project verzekert een sterke relatie met praktijk en wetenschap, omdat zij via haar deelnemers verbonden is aan de Topsector Logistiek, de Green Deal Zero Emissie Stadslogistiek, de Europese federatie voor Cycle Logistics en de Europese onderzoeksprojecten FREVUE (FP7) en CITYLAB (Horizon2020). Via de betrokkenheid van drie lectoren en zes opleidingen van twee hogescholen wordt een brede inzet van de resultaten in het onderwijs gerealiseerd. LEVV-LOGIC hanteert een multidisciplinaire aanpak met aandacht voor de rol van logistiek, techniek, beleid en gedrag. Hiermee versterkt het project professionals van nu en van de toekomst met kennis om problemen in stadslogistiek op te lossen.
Our country contains a very dense and challenging transport and mobility system. National research agendas and roadmaps of multiple sectors such as HTSM, Logistics and Agri&food, promote vehicle automation as a means to increase transport safety and efficiency. SMEs applying vehicle automation require compliance to application/sector specific standards and legislation. A key aspect is the safety of the automated vehicle within its design domain, to be proven by manufacturers and assessed by authorities. The various standards and procedures show many similarities but also lead to significant differences in application experience and available safety related solutions. For example: Industrial AGVs (Automated Guided Vehicles) have been around for many years, while autonomous road vehicles are only found in limited testing environments and pilots. Companies are confronted with an increasing need to cover multiple application environments, such restricted areas and public roads, leading to complex technical choices and parallel certification/homologation procedures. SafeCLAI addresses this challenge by developing a framework for a generic safety layer in the control of autonomous vehicles that can be re-used in different applications across sectors. This is done by extensive consolidation and application of cross-sectoral knowledge and experience – including analysis of related standards and procedures. The framework promises shorter development times and enables more efficient assessment procedures. SafeCLAI will focus on low-speed applications since they are most wanted and technically best feasible. Nevertheless, higher speed aspects will be considered to allow for future extension. SafeCLAI will practically validate (parts) of the foreseen safety layer and publish the foreseen framework as a baseline for future R&D, allowing coverage of broader design domains. SafeCLAI will disseminate the results in the Dutch arena of autonomous vehicle development and application, and also integrate the project learnings into educational modules.