Background Several footwear design characteristics are known to have detrimental effects on the foot. However, one characteristic that has received relatively little attention is the point where the sole flexes in the sagittal plane. Several footwear assessment forms assume that this should ideally be located directly under the metarsophalangeal joints (MTPJs), but this has not been directly evaluated. The aim of this study was therefore to assess the influence on plantar loading of different locations of the shoe sole flexion point. Method Twenty-one asymptomatic females with normal foot posture participated. Standardised shoes were incised directly underneath the metatarsophalangeal joints, proximal to the MTPJs or underneath the midfoot. The participants walked in a randomised sequence of the three shoes whilst plantar loading patterns were obtained using the Pedar® in-shoe pressure measurement system. The foot was divided into nine anatomically important masks, and peak pressure (PP), contact time (CT) and pressure time integral (PTI) were determined. A ratio of PP and PTI between MTPJ2-3/MTPJ1 was also calculated. Results Wearing the shoe with the sole flexion point located proximal to the MTPJs resulted in increased PP under MTPJ 4–5 (6.2%) and decreased PP under the medial midfoot compared to the sub-MTPJ flexion point (−8.4%). Wearing the shoe with the sole flexion point located under the midfoot resulted in decreased PP, CT and PTI in the medial and lateral hindfoot (PP: −4.2% and −5.1%, CT: −3.4% and −6.6%, PTI: −6.9% and −5.7%) and medial midfoot (PP: −5.9% CT: −2.9% PTI: −12.2%) compared to the other two shoes. Conclusion The findings of this study indicate that the location of the sole flexion point of the shoe influences plantar loading patterns during gait. Specifically, shoes with a sole flexion point located under the midfoot significantly decrease the magnitude and duration of loading under the midfoot and hindfoot, which may be indicative of an earlier heel lift.
LINK
Background Objective gait analysis that fully captures the multi-segmental foot movement of a clubfoot may help in early identification of a relapse clubfoot. Unfortunately, this type of objective measure is still lacking in a clinical setting and it is unknown how it relates to clinical assessment. Research question The aim of this study was to identify differences in total gait and foot deviations between clubfoot patients with and without a relapse clubfoot and to evaluate their relationship with clinical status. Methods In this study, Ponseti-treated idiopathic clubfoot patients were included and divided into clubfoot patients with and without a relapse. Objective gait analysis was done resulting in total gait and foot scores and clinical assessment was performed using the Clubfoot Assessment Protocol (CAP). Additionally, a new clubfoot specific foot score, the clubFoot Deviation Index (cFDI*), was calculated to better capture foot kinematics of clubfoot patients. Results Clubfoot patients with a relapse show lower total gait quality (GDI*) and lower clinical status defined by the CAP than clubfoot patients without a relapse. Abnormal cFDI* was found in relapse patients, reflected by differences in corresponding variable scores. Moderate relationships were found for the subdomains of the CAP and total gait and foot quality in all clubfoot patients. Significance A new total foot score was introduced in this study, which was more relevant for the clubfoot population. The use of this new foot score (cFDI*) besides the GDI*, is recommended to identify gait and foot motion deviations. Along with clinical assessment, this will give an overview of the overall status of the complex, multi-segmental aspects of a (relapsed) clubfoot. The relationships found in this study suggest that clinical assessment might be indicative of a deviation in total gait and foot pattern, therefore hinting towards personalised screening for better treatment decision making.
MULTIFILE
Background Understanding the kinematic characteristics of relapse clubfoot compared to successfully treated clubfoot could aid early identification of a relapse and improve treatment planning. The usage of a multi segment foot model is essential in order to grasp the full complexity of the multi-planar and multi-joint deformity of the clubfoot. Research question The purpose of this study was to identify differences in foot kinematics, using a multi-segment foot model, during gait between patients with Ponseti treated clubfoot with and without a relapse and age-matched healthy controls. Methods A cross-sectional study was carried out including 11 patients with relapse clubfoot, 11 patients with clubfoot and 15 controls. Gait analysis was performed using an extended Helen Hayes model combined with the Oxford Foot Model. Statistical analysis included statistical parametric mapping and discrete analysis of kinematic gait parameters of the pelvis, hip, knee, ankle, hindfoot and forefoot in the sagittal, frontal and transversal plane. Results The relapse group showed significantly increased forefoot adduction in relation with the hindfoot and the tibia. Furthermore, this group showed increased forefoot supination in relation with the tibia during stance, whereas during swing increased forefoot supination in relation with the hindfoot was found in patients with relapse clubfoot compared with non-relapse clubfoot. Significance Forefoot adduction and forefoot supination could be kinematic indicators of relapse clubfoot, which might be useful in early identification of a relapse clubfoot. Subsequently, this could aid the optimization of clinical decision making and treatment planning for children with clubfoot.
MULTIFILE
The clubfoot deformity is one of the most common congenital orthopaedic “conditions”. Worldwide approximately 100,000 children are born with unilateral or bilateral clubfoot every year. In the Netherlands the incidence is approximately 175 every year. This three dimensional deformity of the foot involves, equinus, varus, adductus, and cavus . Left untreated the clubfoot leads to deformity, functional disability and pain. Physical impairments of children with clubfoot might lead to limitations in activities and therefore impede a child’s participation. In clinical practice, the orthopaedic surgeon and physiotherapists are regularly consulted by (parents of) clubfoot patients for functional problems such as impaired walking and other daily activities. This does not only affect long-term and physical health of a child, it will also affect the development of social relationships and skills as well. Since walking is a main activity in children to be able to participate in daily life, our previous study (financially supported by SIA Raak Publiek) focussed on gait differences between children with clubfoot and controls. However, differences in gait characteristics do not necessarily lead to functional limitations and restricted participation. Therefore, providing insight in participation and a child’s performance in other activities than walking is necessary. Insight in a child’s participation will also indicate the functional outcome of the treatment, which on its turn could provide essential information concerning a possible relapse.. Early identification of a relapse is important since it could prevent the need for major surgical interventions. The occurrence of a relapse clubfoot will probably also lead to functional differences in the foot as well as problems during activity and participation. Therefore, the main focus of this study is the functional outcomes of physical activities and the characterisation of participation of children with clubfeet in daily activities of childhood.