Abstract: Climate change is related with weather extremes, which may cause damages to infrastructure used by freight transport services. Heavy rainfall may lead to flooding and damage to railway lines, roads and inland waterways. Extreme drought may lead to extremely low water levels, which prevent safe navigation by inland barges. Wet and dry periods may alternate, leaving little time to repair damages. In some Western and Middle-European countries, barges have a large share in freight transport. If a main waterway is out of service, then alternatives are called for. Volume- and price-wise, trucking is not a viable alternative. Could railways be that alternative? The paper was written after the unusually long dry summer period in Europe in 2022. It deals with the question: If the Rhine, a major European waterway becomes locally inaccessible, could railways (temporarily) play a larger role in freight transport? It is a continuation of our earlier research. It contains a case study, the data of which was fed into a simulation model. The model deals with technical details like service specification route length, energy consumption and emissions. The study points to interesting rail services to keep Europe’s freight on the move. Their realization may be complex especially in terms of logistics and infrastructure, but is there an alternative?
MULTIFILE
The paper discusses the growing importance of urban freight research given the increasing urban population trends. The complexity of urban freight systems means that it is essential for the public and private sectors to work together - one way to achieve this has been through freight partnerships. A short review of freight partnerships highlights the way in which they have fostered mutual understanding among urban freight stakeholders. The literature on shared situational awareness (SSA) and joint knowledge production (JKP) has been adapted to position freight partnerships and to further develop and link these partnerships to the concept of a living laboratory concerned with urban freight transport. This novel application of the living lab concept is introduced. Next, the first phases of a city logistics living lab brought in practice in Rotterdam are shortly mentioned. The living lab concept fits the complexities of the urban freight system well and has been a cornerstone of a recently started major freight project in the EU (CITYLAB). © 2016 Published by Elsevier B.V.
MULTIFILE
In this paper, we present the challenges, failures and successes on urban freight transportation. We first identify the various involved stakeholders with their interests. Then we evaluate a large number of urban freight transport initiatives and identify lessons learned, which are distinguished in policy, logistics and technology based views. Further, we present a vision for urban freight transportation, which is not only based on the lessons learned, but also on actual market research reports and recent findings.
LINK