Problems of energy security, diversification of energy sources, and improvement of technologies (including alternatives) for obtaining motor fuels have become a priority of science and practice today. Many scientists devote their scientific research to the problems of obtaining effective brands of alternative (reformulated) motor fuels. Our scientific school also deals with the problems of the rational use of traditional and alternative motor fuels.This article focused on advances in motor fuel synthesis using natural, associated, or biogas. Different raw materials are used for GTL technology: biomass, natural and associated petroleum gases. Modern approaches to feed gas purification, development of Gas-to-Liquid-technology based on Fischer–Tropsch synthesis, and liquid hydrocarbon mixture reforming are considered.Biological gas is produced in the process of decomposition of waste (manure, straw, grain, sawdust waste), sludge, and organic household waste by cellulosic anaerobic organisms with the participation of methane fermentation bacteria. When 1 tonne of organic matter decomposes, 250 to 500–600 cubic meters of biogas is produced. Experts of the Bioenergy Association of Ukraine estimate the volume of its production at 7.8 billion cubic meters per year. This is 25% of the total consumption of natural gas in Ukraine. This is a significant raw material potential for obtaining liquid hydrocarbons for components of motor fuels.We believe that the potential for gas-to-liquid synthetic motor fuels is associated with shale and coalfield gases (e.g. mine methane), methane hydrate, and biogas from biomass and household waste gases.
DOCUMENT
In reflecting on Dutch Christmas shoppers, this article will discuss environmental Kuznets curve (EKC), postmaterialist values hypothesis, and ecological modernization theory. According to the EKC hypothesis, while at the initial stages of industrialization material resources are often used unsustainably, continuing industrialization leads to a threshold after which lead to progressively more sustainable technologies. According to the postmaterialist values hypothesis, only wealthier societies can ‘afford’ to care about the environment, assuming that wealth will lead to development of greater concern about and valuation of environment. Finally, ecological modernization theory postulates that environmental conditions improve with advanced technological development and suggests that enlightened self-interest, economy and ecology can be favourably combined and that productive use of natural resources can be a source of future growth. In generalizing economic, political and social trends in relation to consumption in The Netherlands, the aim of this article is to consider the consequences of Western-style consumption for the enterprise of global development. https://doi.org/10.1016/j.scs.2013.05.004 https://www.linkedin.com/in/helenkopnina/
MULTIFILE
For long flights, the cruise is the longest phase and where the largest amount of fuel is consumed. An in-cruise optimization method has been implemented to calculate the optimal trajectory that reduces the flight cost. A three-dimensional grid has been created, coupling lateral navigation and vertical navigation profiles. With a dynamic analysis of the wind, the aircraft can perform a horizontal deviation or change altitudes via step climbs to reduce fuel consumption. As the number of waypoints and possible step climbs is increased, the number of flight trajectories increases exponentially; thus, a genetic algorithm has been implemented to reduce the total number of calculated trajectories compared to an exhaustive search. The aircraft’s model has been obtained from a performance database, which is currently used in the commercial flight management system studied in this paper. A 5% average flight cost reduction has been obtained.
MULTIFILE
Sustainable consumption is interlinked with sustainable production. This chapter will introduce the closed-loop production, the circular economy, the steady state economy, and Cradle to Cradle (C2C) models of production. It will reflect on the key blockages to a meaningful sustainable production and how these could be overcome, particularly in the context of business education. The case study of the course for bachelor’s students within International Business Management Studies (IBMS) program at three Universities of Applied Science (vocational schools), and at Leiden University College in The Netherlands will be discussed. Student teams from these schools were given the assignment to make a business plan for a selected sponsor company in order to advise them how to make a transition from a linear to circular economy model. These case studies will illustrate the opportunities as well as potential pitfalls of the closed loop production models. The results of case studies’ analysis show that there was a mismatch between expectations of the sponsor companies and those of students on the one hand and a mismatch between theory and practice on the other hand. The former mismatch is explained by the fact that the sponsor companies have experienced a number of practical constraints when confronted with the need for the radical overhaul of established practices within the entire supply chain and students have rarely considered the financial viability of the "ideal scenarios" of linear-circular transitions. The latter mismatch applies to what students had learned about macro-economic theory and the application through micro-economic scenarios in small companies. https://www.springer.com/gp/book/9783319656076 LinkedIn: https://www.linkedin.com/in/helenkopnina/
MULTIFILE
Prevention of non-communicable diseases through, among other factors, increasing vegetables and fruit (V&F) intake is a cost-effective strategy for risk reduction but requires behavioral change. Such changes in adolescents benefit from their active involvement. The Food Boost Challenge (FBC) was developed using a participatory action research approach to enhance healthy eating behaviors, namely V&F products among adolescents. The FBC is an innovation process, involving adolescents, (peer) researchers, and food system partners, like non-governmental and commercial organizations. In 2021–2022, 34 partners provided both cash and in-kind contributions to join the FBC community. Phase 1 involved 200 students identifying barriers and drivers for consumption of F&V products among 1000 pre-vocational adolescents, aged 12–20 years. In phase 2, student teams submitted innovative ideas, resulting in 25 concepts fitting into ≥1 of 4 routes: (I) innovative technology for a healthy diet, (II) new food products/concepts for adolescents, (III) hotspots improving the F&V product experience, and (IV) new routes to market. In phase 3, consortia of adolescents, students, and partners were formed to develop 10 selected concepts into prototypes, and phase 4 offered teams a national platform. Results show that the FBC resonates with all stakeholders, generating valuable insights to increase F&V intake. Prototypes in all four routes have been developed. Additionally, other regions in the Netherlands have adopted the FBC approach. Overall, the FBC is an approach that transforms ideas into actionable measures and shows potential to be adapted to promote various healthy eating behaviors among school students.
DOCUMENT
Some researchers insist that sustainability should be represented as a continuous quest, doubting that there is the ‘right’ way to be sustainable. Acknowledging the immensity of sustainability challenges, this article takes a different perspective, arguing that without understanding of concrete barriers and seeking solutions, the challenge of addressing unsustainable practices becomes unsurmountable. This article will summarize research in sustainability literature that indicates that sustainability requires a constant human population, as well as ecologically benign method of production. This article will survey a number of helpful frameworks that address the key obstacles to sustainability, namely population growth, and unsustainable production and consumption. These frameworks are discussed in the context of business-level solutions and production systems. As illustrated by examples of best practices as well as potential pitfalls associated with each system, these systems have the potential to move the quest for sustainability beyond ‘business as usual.’ https://doi.org/10.1007/s10668-015-9723-1 LinkedIn: https://www.linkedin.com/in/helenkopnina/
MULTIFILE
Aircraft require significant quantities of fuel in order to generate the power required to sustain a flight. Burning this fuel causes the release of polluting particles to the atmosphere and constitutes a direct cost attributed to fuel consumption. The optimization of various aircraft operations in different flight phases such as cruise and descent, as well as terminal area movements, have been identified as a way to reduce fuel requirements, thus reducing pollution. The goal of this chapter is to briefly explain and apply different metaheuristic optimization algorithms to improve the cruise flight phase cost in terms of fuel burn. Another goal is to present an overview of the most popular commercial aircraft models. The algorithms implemented for different optimization strategies are genetic algorithms, the artificial bee colony, and the ant colony algorithm. The fuel burn aircraft model used here is in the form of a Performance Database. A methodology to create this model using a Level D aircraft research flight simulator is briefly explained. Weather plays an important role in flight optimization, and so this work explains a method for incorporating open source weather. The results obtained for the optimization algorithms show that every optimization algorithm was able to reduce the flight consumption, thereby reducing the pollution emissions and contributing to airlines’ profit margins.
DOCUMENT
Be energy future proof: - So, be energy future proof, you do now no how. - Include legislation in this but do not rely on legislation as a guide line. - Base your future-proof energy system on the trends and prepare for that. - But be aware: this ain’t easy.
DOCUMENT
Recently environmental education (EE) literature has been supportive of pluralistic rather than goal-oriented learning. Researchers argue that sustainability is not fixed but socially constructed and that sustainability issues should not be represented as indisputable targets. Countering this trend in environmental education research, this article argues that unsustainability should be treated as a concrete challenge that requires concrete solutions. The author will argue that there is a need for clear articulation of (1) what (un)sustainability is; (2) what are the key challenges of (un)sustainability; and (3) how the sustainability challenges can be meaningfully addressed. This article will outline a number of helpful frameworks that address obstacles to sustainability, ranging from population growth to unsustainable production and consumption practices. Solutions include investment in family planning to counter the effects of overpopulation, and alternative production frameworks, such as Cradle to Cradle that differs from the conventional frameworks. This article will conclude with the broader reflection that without goal-oriented critical learning explicitly providing sound models of sustainability, open learning may never permit transcendence from unsustainability. This article will develop a number of comprehensive frameworks targeted at solutions to sustainability issues both from ethical and practical perspectives. This is a post-peer-review, pre-copyedit version of an article published in "Environment, Development and Sustainability". The final authenticated version is available online at: https://doi.org/10.1007/s10668-014-9584-z https://www.linkedin.com/in/helenkopnina/
MULTIFILE
In this study, aviation, energy, exergy, environmental, exergoeconomic, and exergoenvironmental analyses are performed on a CFM56-3 series high by-pass turbofan engine fueled with Jet-A1 fuel. Specific fuel consumption and specific thrust of the engine are found to be 0.01098 kg/kN.s and 0.3178 kN/kg/s, respectively. Engine's energy efficiency is calculated as 35.37%, while waste energy ratio is obtained as 64.63%. Exergy efficiency, waste exergy rate, and fuel exergy waste ratio are forecasted as 33.32%, 33175.03 kW, and 66.68%, respectively. Environmental effect factor and ecological effect factor are computed as 2.001 and 3.001, while ecological objective function and its index are taken into account of −16597.22 kW and −1.001, respectively. Exergetic sustainability index and sustainable efficiency factor are determined as 0.5 and 1.5 for the CFM56-3 engine, respectively. Environmental damage cost rate is determined as 519.753 $/h, while the environmental damage cost index is accounted as 0.0314 $/kWh. Specific exergy cost of the engine production is found as 40.898 $/GJ from exergoeconomic analysis, while specific product exergy cost is expressed as 49.607 $/GJ from exergoenvironmental analysis. From exergoenvironmental economic analysis, specific exergy cost of fuel is computed as 10.103 $/GJ when specific exergy cost of production is determined as 40.898 $/GJ.
DOCUMENT