The rapidly evolving aviation environment, driven by the Fourth Industrial Revolution, encompasses smart operations, communication technology, and automation. Airports are increasingly developing new autonomous innovation strategies to meet sustainability goals and address future challenges, such as shifting labor markets, working conditions, and digitalization (ACI World, 2019). This paper explores high-level governance strategies, a benchmarking study, that facilitates this transition. It aims to identify the key characteristics and features of the benchmarking study applicable to the development of autonomous airside operations. It also examines areas for improvement in operations, focusing on Key Performance Areas (KPAs) and strategic objectives related to airside automation. The findings highlight several essential performance areas and formulate it to a tailored benchmarking study that airports or aviation stakeholders can adopt to develop automation in airside operations. These criteria and features are summarized into a benchmarking framework that reflects strategy objectives. This paper contributes a valuable benchmarking methodology, supporting the growing global aviation demand for improvements toward more sustainable and smart autonomous airside operations. This outcome motivates aviation stakeholders to innovate to meet environmental and social sustainability goals.
The relentless growth in Mexico City’s aviation traffic has inevitably strained capacity development of its airport, raising thedilemma between the possible solutions. In the present study, Mexico’s Multi-Airport System is subjected to analysis by meansof multi-model simulation, focusing on the capacity-demand problem of the system. The methodology combines phases ofmodelling, data collection, simulation, experimental design, and analysis. Drawing a distinction from previous works involvingtwo-airport systems. It also explores the challenges raised by the Covid-19 pandemic in Mexico City airport operations, with adiscrete-event simulation model of a multi-airport system composed by three airports (MEX, TLC, and the new airport NLU).The study is including the latest data of flights, infrastructures, and layout collected in 2021. Therefore, the paper aims toanswer to the question of whether the system will be able to cope with the expected demand in a short-, medium-, and longtermby simulating three future scenarios based on aviation forecasts. The study reveals potential limitations of the system astime evolves and the feasibility of a joint operation to absorb the demand in such a big region like Mexico City.