ObjectiveThis systematic review aims to reevaluate the role of minerals on muscle mass, muscle strength, physical performance, and the prevalence of sarcopenia in community-dwelling and institutionalized older adults.DesignSystematic review.Setting and ParticipantsIn March 2022, a systematic search was performed in PubMed, Scopus, and Web of Sciences using predefined search terms. Original studies on dietary mineral intake or mineral serum blood concentrations on muscle mass, muscle strength, and physical performance or the prevalence of sarcopenia in older adults (average age ≥65 years) were included.MethodsEligibility screening and data extraction was performed by 2 independent reviewers. Quality assessment was performed with the Effective Public Health Practice Project (EPHPP) Quality Assessment Tool for Quantitative Studies. Risk of bias was evaluated using the Risk Of Bias In Non-randomized Studies-of Exposure (ROBINS-E) tool.ResultsFrom the 15,622 identified articles, a total of 45 studies were included in the review, mainly being cross-sectional and observational studies. Moderate quality of evidence showed that selenium (n = 8) and magnesium (n = 7) were significantly associated with muscle mass, strength, and physical performance as well as the prevalence of sarcopenia. For calcium and zinc, no association could be found. For potassium, iron, sodium, and phosphorus, the association with sarcopenic outcomes remains unclear as not enough studies could be included or were nonconclusive (low quality of evidence).Conclusions and ImplicationsThis systematic review shows a potential role for selenium and magnesium on the prevention and treatment of sarcopenia in older adults. More randomized controlled trials are warranted to determine the impact of minerals on sarcopenia in older adults.
MULTIFILE
PURPOSE: To compare the responses in knee joint muscle activation patterns to different perturbations during gait in healthy subjects.SCOPE: Nine healthy participants were subjected to perturbed walking on a split-belt treadmill. Four perturbation types were applied, each at five intensities. The activations of seven muscles surrounding the knee were measured using surface EMG. The responses in muscle activation were expressed by calculating mean, peak, co-contraction (CCI) and perturbation responses (PR) values. PR captures the responses relative to unperturbed gait. Statistical parametric mapping analysis was used to compare the muscle activation patterns between conditions.RESULTS: Perturbations evoked only small responses in muscle activation, though higher perturbation intensities yielded a higher mean activation in five muscles, as well as higher PR. Different types of perturbation led to different responses in the rectus femoris, medial gastrocnemius and lateral gastrocnemius. The participants had lower CCI just before perturbation compared to the same phase of unperturbed gait.CONCLUSIONS: Healthy participants respond to different perturbations during gait with small adaptations in their knee joint muscle activation patterns. This study provides insights in how the muscles are activated to stabilize the knee when challenged. Furthermore it could guide future studies in determining aberrant muscle activation in patients with knee disorders.
Het ondergaan van een eenzijdige beenamputatie is een drastische chirurgische ingreep. Mensen, die na een amputatie in staat zijn om te lopen met een prothese, zijn functioneel onafhankelijker, en hebben een hogere kwaliteit van leven dan mensen die in een rolstoel belanden. Het is daarom niet verrassend dat het herwinnen van de oopvaardigheid één van de voornaamste doelen is tijdens de revalidatie. Doel van het onderzoek was om inzicht te krijgen in de factoren die het herwinnen en onderhouden van de loopvaardigheid van mensen na een beenamputatie beïnvloeden. Gebaseerd op de resultaten van het onderzoek kan geconcludeerd worden dat de fysieke capaciteit hierbij een belangrijke rol speelt. Een relatief kleine verbetering in de capaciteit kan al resulteren in significante en klinisch relevante verbeteringen. Hoewel geavanceerde prothesen de mechanische belasting van het lopen met een beenprothese verminderen, kan een ineffectieve balanscontrole deze positieve resultaten weer tenietdoen. ABSTRACT Undergoing a lower limb amputation is a life-changing surgery. The ability to walk greatly influences the subject's functional independence and quality of life. Not surprisingly, regaining walking ability is one of the primary goals during prosthetic rehabilitation. The primary aim of the research performed was to enhance our understanding of some of the factors that influence the ability to regain and maintain walking after a unilateral lower limb amputation. Based on the results we can deduce that a person's physical capacity plays an important role in their walking ability. Relatively small improvements in capacity could lead to significant and clinically relevant improvements in people's walking ability. Furthermore, results show that sophisticated prosthetic feet can reduce the mechanical load experienced when walking with a prosthesis. Interestingly, inefficient balance control strategies can undo any positive effect of these prostheses.