The purpose of the study was to assess the accuracy of estimates of step frequency from trunk acceleration data analyzed with commonly used algorithms and time window lengths, at a wide range of gait speeds. Twenty healthy young subjects performed an incremental treadmill protocol from 1 km/h up to 6 km/h, with steps of 1 km/h. Each speed condition was maintained for two minutes. A waist worn accelerometer recorded trunk accelerations, while video analysis provided the correct number of steps taken during each gait speed condition. Accuracy of two commonly used signal analysis methods was examined with several different time windows.
BACKGROUND: Instability of the knee joint during gait is frequently reported by patients with knee osteoarthritis or an anterior cruciate ligament rupture. The assessment of instability in clinical practice and clinical research studies mainly relies on self-reporting. Alternatively, parameters measured with gait analysis have been explored as suitable objective indicators of dynamic knee (in)stability.RESEARCH QUESTION: This literature review aimed to establish an inventory of objective parameters of knee stability during gait.METHODS: Five electronic databases (Pubmed, Embase, Cochrane, Cinahl and SPORTDiscuss) were systematically searched, with keywords concerning knee, stability and gait. Eligible studies used an objective parameter(s) to assess knee (in)stability during gait, being stated in the introduction or methods section. Out of 10717 studies, 89 studies were considered eligible.RESULTS: Fourteen different patient populations were investigated with kinematic, kinetic and/or electromyography measurements during (challenged) gait. Thirty-three possible objective parameters were identified for knee stability, of which the majority was based on kinematic (14 parameters) or electromyography (12 parameters) measurements. Thirty-nine studies used challenged gait (i.e. external perturbations, downhill walking) to provoke knee joint instability. Limited or conflicting results were reported on the validity of the 33 parameters.SIGNIFICANCE: In conclusion, a large number of different candidates for an objective knee stability gait parameter were found in literature, all without compelling evidence. A clear conceptual definition for dynamic knee joint stability is lacking, for which we suggest : "The capacity to respond to a challenge during gait within the natural boundaries of the knee". Furthermore biomechanical gait laboratory protocols should be harmonized, to enable future developments on clinically relevant measure(s) of knee stability during gait.
LINK
Background The gait modification strategies Trunk Lean and Medial Thrust have been shown to reduce the external knee adduction moment (EKAM) in patients with knee osteoarthritis which could contribute to reduced progression of the disease. Which strategy is most optimal differs between individuals, but the underlying mechanism that causes this remains unknown. Research question Which gait parameters determine the optimal gait modification strategy for individual patients with knee osteoarthritis? Methods Forty-seven participants with symptomatic medial knee osteoarthritis underwent 3-dimensional motion analysis during comfortable gait and with two gait modification strategies: Medial Thrust and Trunk Lean. Kinematic and kinetic variables were calculated. Participants were then categorized into one of the two subgroups, based on the modification strategy that reduced the EKAM the most for them. Multiple logistic regression analysis with backward elimination was used to investigate the predictive nature of dynamic parameters obtained during comfortable walking on the optimal modification gait strategy. Results For 68.1 % of the participants, Trunk Lean was the optimal strategy in reducing the EKAM. Baseline characteristics, kinematics and kinetics did not differ significantly between subgroups during comfortable walking. Changes to frontal trunk and tibia angles correlated significantly with EKAM reduction during the Trunk Lean and Medial Thrust strategies, respectively. Regression analysis showed that MT is likely optimal when the frontal tibia angle range of motion and peak knee flexion angle in early stance during comfortable walking are high (R2Nagelkerke = 0.12). Significance Our regression model based solely on kinematic parameters from comfortable walking contained characteristics of the frontal tibia angle and knee flexion angle. As the model explains only 12.3 % of variance, clinical application does not seem feasible. Direct assessment of kinetics seems to be the most optimal strategy for selecting the most optimal gait modification strategy for individual patients with knee osteoarthritis.
MULTIFILE