© Springer International Publishing AG 2016. A serious game needs to combine a number of different aspects to help the end user in reaching the desired effects. This requires incorporating a broad range of different aspects in the design, stemming from a broad range of different fields of expertise. For designers, developers, researchers, and other stakeholders it is not straightforward how to organize the design and development process, to make sure that these aspects are properly addressed. In this chapter we will discuss a number of ways of organizing the design and development process and various models that support specific design decisions during this process, concluding with a discussion of design patterns for serious games.
DOCUMENT
In order for techniques from Model Driven Engineering to be accepted at large by the game industry, it is critical that the effectiveness and efficiency of these techniques are proven for game development. There is no lack of game design models, but there is no model that has surfaced as an industry standard. Game designers are often reluctant to work with models: they argue these models do not help them design games and actually restrict their creativity. At the same time, the flexibility that model driven engineering allows seems a good fit for the fluidity of the game design process, while clearly defined, generic models can be used to develop automated design tools that increase the development’s efficiency.
DOCUMENT
An important step in the design of an effective educational game is the formulation of the to-be-achieved learning goals. The learning goals help shape the content and the flow of the entire game, i.e. they provide the basis for choosing the game’s core (learning) mechanics. A mistake in the formulation of the learning goals or the resulting choice in game mechanics can have large consequences, as the game may not lead to the intended effects. At the moment, there are many different methods for determining the learning goals; they may be derived by a domain expert, based on large collections of real-life data, or, alternatively, not be based on anything in particular. Methods for determining the right game mechanics range from rigid taxonomies, loose brainstorming sessions, to, again, not any method in particular. We believe that for the field of educational game design to mature, there is a need for a more uniform approach to establishing the learning goals and translating them into relevant and effective game activities. This paper explores two existing, non-game design specific, methods to help determine learning goals and the subsequent core mechanics: the first is through a Cognitive Task Analysis (CTA), which can be used to analyse and formalize the problem and the knowledge, skills, attitudes that it is comprised of, and the second is through the Four Components Instructional Design (4C-ID), which can be used to determine how the task should be integrated into an educational learning environment. Our goal is to see whether these two methods provide the uniform approach we need. This paper gives an overview of our experiences with these methods and provides guidelines for other researchers on how these methods could be used in the educational game design process.
DOCUMENT
Physical rehabilitation programs revolve around the repetitive execution of exercises since it has been proven to lead to better rehabilitation results. Although beginning the motor (re)learning process early is paramount to obtain good recovery outcomes, patients do not normally see/experience any short-term improvement, which has a toll on their motivation. Therefore, patients find it difficult to stay engaged in seemingly mundane exercises, not only in terms of adhering to the rehabilitation program, but also in terms of proper execution of the movements. One way in which this motivation problem has been tackled is to employ games in the rehabilitation process. These games are designed to reward patients for performing the exercises correctly or regularly. The rewards can take many forms, for instance providing an experience that is engaging (fun), one that is aesthetically pleasing (appealing visual and aural feedback), or one that employs gamification elements such as points, badges, or achievements. However, even though some of these serious game systems are designed together with physiotherapists and with the patients’ needs in mind, many of them end up not being used consistently during physical rehabilitation past the first few sessions (i.e. novelty effect). Thus, in this project, we aim to 1) Identify, by means of literature reviews, focus groups, and interviews with the involved stakeholders, why this is happening, 2) Develop a set of guidelines for the successful deployment of serious games for rehabilitation, and 3) Develop an initial implementation process and ideas for potential serious games. In a follow-up application, we intend to build on this knowledge and apply it in the design of a (set of) serious game for rehabilitation to be deployed at one of the partners centers and conduct a longitudinal evaluation to measure the success of the application of the deployment guidelines.
The Dutch Environmental Vision and Mobility Vision 2050 promote climate-neutral urban growth around public transport stations, envisioning them as vibrant hubs for mobility, community, and economy. However, redevelopment often increases construction, a major CO₂ contributor. Dutch practice-led projects like 'Carbon Based Urbanism', 'MooiNL - Practical guide to urban node development', and 'Paris Proof Stations' explore integrating spatial and environmental requirements through design. Design Professionals seek collaborative methods and tools to better understand how can carbon knowledge and skills be effectively integrated into station area development projects, in architecture and urban design approaches. Redeveloping mobility hubs requires multi-stakeholder negotiations involving city planners, developers, and railway managers. Designers act as facilitators of the process, enabling urban and decarbonization transitions. CARB-HUB explores how co-creation methods can help spatial design processes balance mobility, attractiveness, and carbon neutrality across multiple stakeholders. The key outputs are: 1- Serious Game for Co-Creation, which introduces an assessment method for evaluating the potential of station locations, referred to as the 4P value framework. 2-Design Toolkit for Decarbonization, featuring a set of Key Performance Indicators (KPIs) to guide sustainable development. 3- Research Bid for the DUT–Driving Urban Transitions Program, focusing on the 15-minute City Transition Pathway. 4- Collaborative Network dedicated to promoting a low-carbon design approach. The 4P value framework offers a comprehensive method for assessing the redevelopment potential of station areas, focusing on four key dimensions: People, which considers user experience and accessibility; Position, which examines the station's role within the broader transport network; Place-making, which looks at how well the station integrates into its surrounding urban environment; and Planet, which addresses decarbonization and climate adaptation. CARB-HUB uses real cases of Dutch stations in transition as testbeds. By translating abstract environmental goals into tangible spatial solutions, CARB-HUB enables scenario-based planning, engaging designers, policymakers, infrastructure managers, and environmental advocates.
The latest IPCC Report (2022) provided by the UN shows us that, to guarantee a safe future for upcoming generations, we must change how we lead our lives on several levels. However, the increasing urgency to act and behave in a way that is not damaging the climate is bringing many psychological concerns to young generations. Worldwide reports are demonstrating how the issue of eco-anxiety is increasing daily, and how young people are feeling more hopeless than ever. Climate change has become a climate crisis, and individuals are experiencing pressure and fear incessantly (Marks et al., 2021). We, as Climate Streamers, have often found ourselves in this situation as well, but rather than freezing, we decided to take this challenge and think of solutions. Therefore, with the support of Breda University of Applied Sciences, the Performatory community, the BUas Startup Support Team, and outside mentors, we created Climate Streamers Foundation: a new youth-led non-profit organisation and a movement working towards a more inclusive and less polarised climate action. By working with leisure elements and a positive and appreciative approach, we want to give back hope, voice and power to the youth and inspire each other genuinely and sustainably. The purpose of this application is to allow us to elaborate a feasibility study concerning our MVP (minimum viable product), the card game, and boost the overall concept. We intend to implement the researched data to improve the design and sales management. The card game aims to stimulate appreciative conversations by giving space to players to express their opinions and personal stories and it is designed so everyone can play it, regardless of background and knowledge. After giving 200 games in production, we launched the card game in July 2022.