We describe here the design and implementation of the Fashion Tech Farm (FTF), which aims to drive sustainable innovation in garments and fashion. We describe our goals, design principles, and the implementation. The design principles are rooted in an understanding of the fashion system, open networks, and entrepreneurial thinking. After four years of work on the FTF, we review three projects to evaluate how far the work has achieved the main goals and how our design principles are developing.
MULTIFILE
Bumping Elbows explores a workflow integrating 3D body scanning technology with robotic knitting to create personalized garments. Traditional 3D knitting development relies on 2D drafts and panels, rooted in industrial flatbed knitting practices. Our approach leverages accurate topology measurements from 3D body scans to directly inform garment design and production, allowing for custom fits to unique body shapes. We will demonstrate this process through live 3D scanning and software demonstrations, highlighting the challenges and opportunities integrating body scans and knitting techniques like goring. Our included software addresses limitations of previous work and outlines advancements needed for broader research adoption, emphasizing the potential of combining 3D scanning with robotic knitting. This method offers enhanced personalization and sustainability in garment production, showcasing the ongoing challenges and advancements in achieving precision in robotic knitting.
Personalization, production on-demand, and flexible manufacture facilities are growing within the European apparel sector, supported by national and regional public policy. These developments seem to embody a much waited “paradigm shift” in the fashion industry; a shift from global to local scale, from quantity to quality and from standard products to personalized services. Such values, however, are far from new, and scholars have already pointed out the similarities between emerging and pre-industrial systems of production and consumption. This article argues that in order to understand current developments in historical context, we should return to the process of industrialization of the apparel industry during the turn from the 19th to the 20th C, taking into account aspects of production as much as mediation and consumption. With this aim in mind, the article traces the rise of ready-made garments in the Netherlands and northwest Europe, and the associated decline in custom- and home-made garments in the region. Although available statistical data is insufficient to accurately map these phenomena, secondary sources suggest that both processes were not simultaneous and therefore there was not a straightforward substitution of custom- and home-made clothing by ready-mades. While availability and trade of mass-produced ready-mades was escalating since the early 19th C, it was not until mid 20th C that custom- and home-made clothing declined among the middle class. In this study, such a gap is explained by a steady increase in the amount of clothes acquired per person: an expanding culture of consumption during the period under consideration may have enabled these different systems to flourish all together. A parallelism of the findings above with current developments suggests that we should not regard emergent industrial formats as substitutionary of established ones, but as complementary. We may then reevaluate to what extent does the rise of the flexible factory enable a “revolution”, a shift from a problematic present to a contrasting and desirable future. This historical overview indicates that, on the contrary, emerging product-service-systems manufacturing personalized garments on-demand must be considered in relation to – and in coexistence with- traditional industrial models.
MULTIFILE
The textile industry faces a significant environmental challenge, annually generating 45 million tons of waste cotton textiles, of which 75% are incinerated or sent to landfills, causing environmental harm. Additionally, 67% of garments are made of plastic fibers, and when disposed of in landfills, 5% of them turn into microplastics that can end up on our plates. Chicfashic proposes an innovative biotech process to address these issues by recovering and recycling plastic fibers while transforming natural fibers into bio-based molecules. These molecules are then used as secondary raw materials to produce bio-based pigments for textiles. The project aims to optimize this process and test it on a larger scale with the assistance of HAN BioCentre. This initiative aligns with Dutch government and EU regulations mandating textile recycling by 2050. The technology used is patent pending and does not involve the use of toxic chemicals or the release of harmful wastewater or fumes, contributing to a shift towards a more circular and sustainable textile industry by reintegrating natural colorants into textile production.
The textile industry contributes over 8% of global greenhouse gas emissions and 20% of the world's wastewater, exceeding emissions from international flights and shipping combined. In the European Union, textile purchases in 2020 resulted in about 270 kg of CO₂ emissions per person, yet only 1% of used clothes are recycled into new garments.To address these challenges, the Textile Hub Groningen (THG) aims to assist small and medium-sized enterprises (SMEs) and stakeholders in forming circular textile value chains, hence reducing waste. Designing circular value chains is complex due to conflicting interests, lack of shared understanding, knowledge gaps regarding circular design principles and emerging technologies, and inadequate tools for collaborative business model development. The potential key stakeholders in the circular textile value chain find it hard to use existing tools and methods for designing these value chains as they are often abstract, not designed to be used in a collaborative setting that fosters collective sense making, immersive learning and experimentation. Consequently, the idea of circular textile value chain remains abstract and hard to realize.Serious games have been used in the past to learn about, simulate and experiment with complex adaptive systems. In this project we aim to answer the following research:How can serious games be leveraged to design circular textile value chains in the region?The expected outcomes of this project are: • Serious game: Facilitates the design of circular textile value chains• Academic Publication: Publish findings to contribute to scholarly discourse.• Future Funding Preparation: Mobilize partners and prepare proposals for follow-up funding to expand the approach to other domains.By leveraging game-based collaborative circular value chain and business model design experiences, this project aims to overcome barriers in designing viable circular value chains in the textile industry.
The textile industry is responsible for over 8% of global greenhouse gas emissions and 20% of the world’s wastewater, surpassing the emissions from international flights and shipping combined. In the European Union, textile purchases in 2020 led to around 270 kg of CO₂ emissions per person, yet only 1% of used clothing is recycled into new garments. The municipality of Groningen manages an estimated 950 kilotons of textile waste but is only able to collect, sort, and recycle 250 kilotons. To address these challenges, Textile Hub Groningen (THG) seeks to support small and medium-sized enterprises (SMEs) and stakeholders in creating circular textile value chains. However, designing circular value chains presents challenges, including conflicting interests, knowledge gaps on circular design principles, and inadequate tools for collaborative business model development. Potential stakeholders often find current tools too abstract and not conducive to collaboration, learning, or experimentation. As a result, circular value chains remain difficult to achieve from the perspective of individual stakeholders. Serious games have been employed to simulate and experiment with complex adaptive systems , . Research shows that well-designed playful learning enhances both learning and motivation, particularly when social elements are integrated . This project aims to answer the following research question: How can serious games be leveraged to design circular textile value chains in the region? The expected outcomes are: 1. Serious Game: Design, test, and deliver a serious game to facilitate the joint design of circular textile value chains. 2. Publications: Extract insights from the game’s design and evaluation, contributing to both academic and practical discussions. 3. Consortium for Follow-up: Mobilize partners and secure funding for future projects in related fields. Through game-based collaborative circular value chain and business model design experiences, this project overcomes barriers in designing viable circular value chains in the textile industry