Background & aims: High protein delivery during early critical illness is associated with lower mortality, while energy overfeeding is associated with higher mortality. Protein-to-energy ratios of traditional enteral formulae are sometimes too low to reach protein targets without energy overfeeding. This prospective feasibility study aimed to evaluate the ability of a new enteral formula with a high protein-to-energy ratio to achieve the desired protein target while avoiding energy overfeeding.Methods: Mechanically ventilated non-septic patients received the high protein-to-energy ratio nutrition during the first 4 days of ICU stay (n = 20). Nutritional prescription was 90% of measured energy expenditure. Primary endpoint was the percentage of patients reaching a protein target of ≥1.2 g/kg ideal body weight on day 4. Other endpoints included a comparison of nutritional intake to matched historic controls and the response of plasma amino acid concentrations. Safety endpoints were gastro-intestinal tolerance and plasma urea concentrations. Results: Nineteen (95%) patients reached the protein intake target of ≥1.2 g/kg ideal body weight on day 4, compared to 65% in historic controls (p = 0.024). Mean plasma concentrations of all essential amino acids increased significantly from baseline to day 4. Predefined gastro-intestinal tolerance was good, but unexplained foul smelling diarrhoea occurred in two patients. In one patient plasma urea increased unrelated to acute kidney injury. Conclusions: In selected non-septic patients tolerating enteral nutrition, recommended protein targets can be achieved without energy overfeeding using a new high protein-to-energy ratio enteral nutrition.
MULTIFILE
Prehabilitation trajectories contribute to improving lifestyle choices and influencing risk factors to reduce postoperative complications, the overall hospital stay and lower health care costs. This paper gives an overview of the best current evidence on the role, scope, added value and expertise of nurses during the prehabilitation trajectory of patients with GI cancer, consisting of relevant nursing diagnosis, interventions and outcomes within four specific domains. The methods used are literature searches that were performed between June 2022 and January 2023, with a final search on January 25th. The search strategy included four steps, following the Joanna Briggs Institute Manual. Two researchers contributed to the study selection process. The results were categorized according to the domains of multimodal prehabilitation. The Handbook of Carpenito was used to link the results to nursing diagnoses, interventions and nurse sensitive outcomes.
DOCUMENT
From the publisher: "Background: The introduction of whole new foods in a population may lead to sensitization and food allergy. This constitutes a potential public health problem and a challenge to risk assessors and managers as the existing understanding of the pathophysiological processes and the currently available biological tools for prediction of the risk for food allergy development and the severity of the reaction are not sufficient. There is a substantial body of in vivo and in vitro data describing molecular and cellular events potentially involved in food sensitization. However, these events have not been organized in a sequence of related events that is plausible to result in sensitization, and useful to challenge current hypotheses. The aim of this manuscript was to collect and structure the current mechanistic understanding of sensitization induction to food proteins by applying the concept of adverse outcome pathway (AOP). Main body: The proposed AOP for food sensitization is based on information on molecular and cellular mechanisms and pathways evidenced to be involved in sensitization by food and food proteins and uses the AOPs for chemical skin sensitization and respiratory sensitization induction as templates. Available mechanistic data on protein respiratory sensitization were included to fill out gaps in the understanding of how proteins may affect cells, cell-cell interactions and tissue homeostasis. Analysis revealed several key events (KE) and biomarkers that may have potential use in testing and assessment of proteins for their sensitizing potential. Conclusion: The application of the AOP concept to structure mechanistic in vivo and in vitro knowledge has made it possible to identify a number of methods, each addressing a specific KE, that provide information about the food allergenic potential of new proteins. When applied in the context of an integrated strategy these methods may reduce, if not replace, current animal testing approaches. The proposed AOP will be shared at the www.aopwiki.org platform to expand the mechanistic data, improve the confidence in each of the proposed KE and key event relations (KERs), and allow for the identification of new, or refinement of established KE and KERs." Authors: Jolanda H. M. van BilsenEmail author, Edyta Sienkiewicz-Szłapka, Daniel Lozano-Ojalvo, Linette E. M. Willemsen, Celia M. Antunes, Elena Molina, Joost J. Smit, Barbara Wróblewska, Harry J. Wichers, Edward F. Knol, Gregory S. Ladics, Raymond H. H. Pieters, Sandra Denery-Papini, Yvonne M. Vissers, Simona L. Bavaro, Colette Larré, Kitty C. M. Verhoeckx and Erwin L. Roggen
LINK