In this study we use aggregated weighted scores of environmental effects to study environmental influences on well-being and happiness. To this end, we split a sample of Netherlands Twin Register (NTR) participants into a training (N =4857) and test (N =2077) sample. In the training sample, we use elastic net regression to estimate effect sizes for associations between life satisfaction and two sets of environmental variables: one based on self- report socioenvironmental data, and one based on objective physical environmental data. Based on these effect sizes, we create two poly-environmental scores (PES-S and PES-O, for self-reports and objective data respectively). In the test sample, we perform association analyses between different measures of well-being and the two PESs. We find that the PES-S explains ~36% of the variance in well-being, while the PES-O does not significantly contribute to the model. Variance in other well-being measures (i.e., different life satisfaction domains, subjective happiness, quality of life, flourishing, psychological well-being, self-rated health, depressive problems, and loneliness) are explained to varying extents by the PESs, ranging from 6.36% (self-rated health) to 36.66% (loneliness). These predictive values did not change during the COVID-19 pandemic (N =3214). Validating the PES-S in the UK biobank (N =40,614), we find that the UK biobank PES-S explains about ~12% of the variance in happiness. Lastly, we examine if there is any indication for gene-environment correlation (rGE), the phenomenon where one’s genetic predisposition influences exposure to the environment, by associating the PESs with polygenic scores (PGS) in a sample of Netherlands Twin Register (NTR) and UK Biobank participants. While the PES and PGS were not correlated in the NTR sample, they were correlated in the larger UK biobank sample, indicating the potential presence of rGE. We discuss several limitations pertaining to our dataset, such as a potential influence of common method bias, and reflect on how PESs might be used in future research.
MULTIFILE
Plants are sessile organisms that deal with their -sometimes adverse- environment in well-regulated ways. Chromatin remodeling involving SWI/SNF2-type ATPases is thought to be an important epigenetic mechanism for the regulation of gene expression in different developmental programs and for integrating these programs with the response to environmental signals. In this study, we report on the role of chromatin remodeling in Arabidopsis with respect to the variability of growth and gene expression in relationship to environmental conditions.
DOCUMENT
Application of animal manure to soils results in the introduction of manure-derived bacteria and their antimicrobial resistance genes (ARGs) into soils. ResCap is a novel targeted-metagenomic approach that allows the detection of minority components of the resistome gene pool without the cost-prohibitive coverage depths and can provide a valuable tool to study the spread of antimicrobial resistance (AMR) in the environment. We used high-throughput sequencing and qPCR for 16S rRNA gene fragments as well as ResCap to explore the dynamics of bacteria, and ARGs introduced to soils and adjacent water ditches, both at community and individual scale, over a period of three weeks. The soil bacteriome and resistome showed strong resilience to the input of manure, as manuring did not impact the overall structure of the bacteriome, and its effects on the resistome were transient. Initially, manure application resulted in a substantial increase of ARGs in soils and adjacent waters, while not affecting the overall bacterial community composition. Still, specific families increased after manure application, either through the input of manure (e.g., Dysgonomonadaceae) or through enrichment after manuring (e.g., Pseudomonadaceae). Depending on the type of ARG, manure application resulted mostly in an increase (e.g., aph(6)-Id), but occasionally also in a decrease (e.g., dfrB3) of the absolute abundance of ARG clusters (FPKM/kg or L). This study shows that the structures of the bacteriome and resistome are shaped by different factors, where the bacterial community composition could not explain the changes in ARG diversity or abundances. Also, it highlights the potential of applying targeted metagenomic techniques, such as ResCap, to study the fate of AMR in the environment.
MULTIFILE