This report presents the highlights of the 7th European Meeting on Molecular Diagnostics held in Scheveningen, The Hague, The Netherlands, 12-14 October 2011. The areas covered included molecular diagnostics applications in medical microbiology, virology, pathology, hemato-oncology,clinical genetics and forensics. Novel real-time amplification approaches, novel diagnostic applications and new technologies, such as next-generation sequencing, PCR lectrospray-ionization TOF mass spectrometry and techniques based on the detection of proteins or other molecules, were discussed. Furthermore, diagnostic companies presented their future visions for molecular diagnostics in human healthcare.
DOCUMENT
The relationship between race and biology is complex. In contemporary medical science, race is a social construct that is measured via self-identification of study participants. But even though race has no biological essence, it is often used as variable in medical guidelines (e.g., treatment recommendations specific for Black people with hypertension). Such recommendations are based on clinical trials in which there was a significant correlation between self-identified race and actual, but often unmeasured, health-related factors such as (pharmaco) genetics, diet, sun exposure, etc. Many teachers are insufficiently aware of this complexity. In their classes, they (unintentionally) portray self-reported race as having a biological essence. This may cause students to see people of shared race as biologically or genetically homogeneous, and believe that race-based recommendations are true for all individuals (rather than reflecting the average of a heterogeneous group). This medicalizes race and reinforces already existing healthcare disparities. Moreover, students may fail to learn that the relation between race and health is easily biased by factors such as socioeconomic status, racism, ancestry, and environment and that this limits the generalizability of race-based recommendations. We observed that the clinical case vignettes that we use in our teaching contain many stereotypes and biases, and do not generally reflect the diversity of actual patients. This guide, written by clinical pharmacology and therapeutics teachers, aims to help our colleagues and teachers in other health professions to reflect on and improve our teaching on race-based medical guidelines and to make our clinical case vignettes more inclusive and diverse.
MULTIFILE
This pre-study anticipates to a SIA call focussing on circular and bio-based economy in Brazil. It is linked to the Living Lab Brazil managed by Avans University of Applied Sciences. Although the dairy value chain will benefit from both circular and bio-based principles, this pre-study will be limited to circular systems. There is a vast potential for investment by the Dutch and Brazilian private sector in the dairy value chain in Minas Gerais (MG), Brazil. There is also ample room to improve production efficiency towards a more circular system. Notwithstanding the business opportunities in the Brazilian dairy sector, there are challenges in attracting and consolidating partnerships along the circular-based value chain. A better understanding of the demands, challenges and opportunities of the interested Dutch companies is highly relevant to develop sustainable circular-based dairy value chains. Therefore, the goal of our project proposal is the exploration of a potential Dutch business network that is interested to invest in the Brazilian circular dairy value chain, and an exploration of the potential business opportunities for the Dutch and Brazilian dairy sector. The consortium in our proposal is conformed as follows: (a) Van Hall Larenstein University of Applied Sciences (VHL). VHL is the leading knowledge institute. Vilentum University of Applied Sciences and the Federal University of Viçosa will participate through VHL. (b) Alta Genetics BV; (c) Groasis BV. To achieve our goal we focus on the following questions: What is the potential and what are the bottlenecks for the Dutch private sector (SME’s) to increase business opportunities in the dairy sector of MG? What are the business opportunities to develop and innovate circular-based dairy value chains through the Dutch and Brazilian private sector with dairy breeding and agro-silvopastoral farming as pilots? The outputs of this study will be: A list of potential Dutch private investors, both interested but hesitating and/or already successful. Basically we would like to identify “partners” and to build up a business network where we could match-make the Dutch companies with the Brazilian companies or clients; A pre-proposal including intentions for further collaboration; Three detailed reports with marketing and investment opportunities and/or research strategy in relation to circular-based economy in: general dairy chain, dairy breeding and agro-silvopastoral farming. The latter two topics must be considered as pilots for the entire dairy value chain.
Structural colour (SC) is created by light interacting with regular nanostructures in angle-dependent ways resulting in vivid hues. This form of intense colouration offers commercial and industrial benefits over dyes and other pigments. Advantages include durability, efficient use of light, anti-fade properties and the potential to be created from low cost materials (e.g. cellulose fibres). SC is widely found in nature, examples include butterflies, squid, beetles, plants and even bacteria. Flavobacterium IR1 is a Gram-negative, gliding bacterium isolated from Rotterdam harbour. IR1 is able to rapidly self-assemble into a 2D photonic crystal (a form of SC) on hydrated surfaces. Colonies of IR1 are able to display intense, angle-dependent colours when illuminated with white light. The process of assembly from a disordered structure to intense hues, that reflect the ordering of the cells, is possible within 10-20 minutes. This bacterium can be stored long-term by freeze drying and then rapidly activated by hydration. We see these properties as suiting a cellular reporter system quite distinct from those on the market, SC is intended to be “the new Green Fluorescent Protein”. The ability to understand the genomics and genetics of SC is the unique selling point to be exploited in product development. We propose exploiting SC in IR1 to create microbial biosensors to detect, in the first instance, volatile compounds that are damaging to health and the environment over the long term. Examples include petroleum or plastic derivatives that cause cancer, birth defects and allergies, indicate explosives or other insidious hazards. Hoekmine, working with staff and students within the Hogeschool Utrecht and iLab, has developed the tools to do these tasks. We intend to create a freeze-dried disposable product (disposables) that, when rehydrated, allow IR1 strains to sense and report multiple hazardous vapours alerting industries and individuals to threats. The data, visible as brightly coloured patches of bacteria, will be captured and quantified by mobile phone creating a system that can be used in any location by any user without prior training. Access to advice, assay results and other information will be via a custom designed APP. This work will be performed in parallel with the creation of a business plan and market/IP investigation to prepare the ground for seed investment. The vision is to make a widely usable series of tests to allow robust environmental monitoring for all to improve the quality of life. In the future, this technology will be applied to other areas of diagnostics.
CRISPR/Cas genome engineering unleashed a scientific revolution, but entails socio-ethical dilemmas as genetic changes might affect evolution and objections exist against genetically modified organisms. CRISPR-mediated epigenetic editing offers an alternative to reprogram gene functioning long-term, without changing the genetic sequence. Although preclinical studies indicate effective gene expression modulation, long-term effects are unpredictable. This limited understanding of epigenetics and transcription dynamics hampers straightforward applications and prevents full exploitation of epigenetic editing in biotechnological and health/medical applications.Epi-Guide-Edit will analyse existing and newly-generated screening data to predict long-term responsiveness to epigenetic editing (cancer cells, plant protoplasts). Robust rules to achieve long-term epigenetic reprogramming will be distilled based on i) responsiveness to various epigenetic effector domains targeting selected genes, ii) (epi)genetic/chromatin composition before/after editing, and iii) transcription dynamics. Sustained reprogramming will be examined in complex systems (2/3D fibroblast/immune/cancer co-cultures; tomato plants), providing insights for improving tumor/immune responses, skin care or crop breeding. The iterative optimisations of Epi-Guide-Edit rules to non-genetically reprogram eventually any gene of interest will enable exploitation of gene regulation in diverse biological models addressing major societal challenges.The optimally balanced consortium of (applied) universities, ethical and industrial experts facilitates timely socioeconomic impact. Specifically, the developed knowledge/tools will be shared with a wide-spectrum of students/teachers ensuring training of next-generation professionals. Epi-Guide-Edit will thus result in widely applicable effective epigenetic editing tools, whilst training next-generation scientists, and guiding public acceptance.