Completeness of data is vital for the decision making and forecasting on Building Management Systems (BMS) as missing data can result in biased decision making down the line. This study creates a guideline for imputing the gaps in BMS datasets by comparing four methods: K Nearest Neighbour algorithm (KNN), Recurrent Neural Network (RNN), Hot Deck (HD) and Last Observation Carried Forward (LOCF). The guideline contains the best method per gap size and scales of measurement. The four selected methods are from various backgrounds and are tested on a real BMS and metereological dataset. The focus of this paper is not to impute every cell as accurately as possible but to impute trends back into the missing data. The performance is characterised by a set of criteria in order to allow the user to choose the imputation method best suited for its needs. The criteria are: Variance Error (VE) and Root Mean Squared Error (RMSE). VE has been given more weight as its ability to evaluate the imputed trend is better than RMSE. From preliminary results, it was concluded that the best K‐values for KNN are 5 for the smallest gap and 100 for the larger gaps. Using a genetic algorithm the best RNN architecture for the purpose of this paper was determined to be GatedRecurrent Units (GRU). The comparison was performed using a different training dataset than the imputation dataset. The results show no consistent link between the difference in Kurtosis or Skewness and imputation performance. The results of the experiment concluded that RNN is best for interval data and HD is best for both nominal and ratio data. There was no single method that was best for all gap sizes as it was dependent on the data to be imputed.
MULTIFILE
Geospatial technologies have the potential to transform the lives of older adults by providing them with necessary tools to navigate their local communities, access services, connect with others, and access valuable information. However, the usability and accessibility of such technologies often fall short of the needs of older adults. Many existing geospatial tools are not designed with the needs and preferences of older adults in mind; this can lead to usability challenges and limit their usage. This paper explores a participatory approach in developing an inclusive geodata-collection tool that is specifically tailored to older users’ needs. The paper also highlights the importance of incorporating user-centered design principles, participatory design methods, and accessibility guidelines throughout the entire geodata-tool-development process. It also emphasizes the need for ongoing user engagement and feedback in order to ensure that the tool remains relevant and usable in the evolving digital landscape. This participatory approach has resulted in a tool that is easy to use and accessible for older adults; it is available in various languages, thus ensuring that the elderly can actively participate in the prototype’s creation and contribute to the collection of the geospatial information that reflects their lived experiences and needs.
MULTIFILE
National forestry Commission (SBB) and National Park De Biesbosch. Subcontractor through NRITNational parks with large flows of visitors have to manage these flows carefully. Methods of data collection and analysis can be of help to support decision making. The case of the Biesbosch National Park is used to find innovative ways to figure flows of yachts, being the most important component of water traffic, and to create a model that allows the estimation of changes in yachting patterns resulting from policy measures. Recent policies oriented at building additional waterways, nature development areas and recreational concentrations in the park to manage the demands of recreation and nature conservation offer a good opportunity to apply this model. With a geographical information system (GIS), data obtained from aerial photographs and satellite images can be analyzed. The method of space syntax is used to determine and visualize characteristics of the network of leisure routes in the park and to evaluate impacts resulting from expected changes in the network that accompany the restructuring of waterways.
The Dutch main water systems face pressing environmental, economic and societal challenges due to climatic changes and increased human pressure. There is a growing awareness that nature-based solutions (NBS) provide cost-effective solutions that simultaneously provide environmental, social and economic benefits and help building resilience. In spite of being carefully designed and tested, many projects tend to fail along the way or never get implemented in the first place, wasting resources and undermining trust and confidence of practitioners in NBS. Why do so many projects lose momentum even after a proof of concept is delivered? Usually, failure can be attributed to a combination of eroding political will, societal opposition and economic uncertainties. While ecological and geological processes are often well understood, there is almost no understanding around societal and economic processes related to NBS. Therefore, there is an urgent need to carefully evaluate the societal, economic, and ecological impacts and to identify design principles fostering societal support and economic viability of NBS. We address these critical knowledge gaps in this research proposal, using the largest river restoration project of the Netherlands, the Border Meuse (Grensmaas), as a Living Lab. With a transdisciplinary consortium, stakeholders have a key role a recipient and provider of information, where the broader public is involved through citizen science. Our research is scientifically innovative by using mixed methods, combining novel qualitative methods (e.g. continuous participatory narrative inquiry) and quantitative methods (e.g. economic choice experiments to elicit tradeoffs and risk preferences, agent-based modeling). The ultimate aim is to create an integral learning environment (workbench) as a decision support tool for NBS. The workbench gathers data, prepares and verifies data sets, to help stakeholders (companies, government agencies, NGOs) to quantify impacts and visualize tradeoffs of decisions regarding NBS.