Airports represent the major bottleneck in the air traffic management system with increasing traffic density. Enhanced levels of automation and coordination of surface operations are imperative to reduce congestion and to improve efficiency. This paper addresses the problem of comparing different control strategies on the airport surface to investigate their impacts and benefits. We propose an optimization approach to solve in a unified manner the coordinated surface operations problem on network models of an actual hub airport. Controlled pushback time, taxi reroutes and controlled holding time (waiting time at runway threshold for departures and time spent in runway crossing queues for arrivals) are considered as decisions to optimize the ground movement problem. Three major aspects are discussed:1) benefits of incorporating taxi reroutes on the airport performance metrics; 2) priority of arrivals and departures in runway crossings; 3) tradeoffs between controlled pushback and controlled holding time for departures. A preliminary study case is conducted in a model based on operations of Paris Charles De-Gaulle airport under the most frequently used configuration. Airport is modeled using a node-link network structure. Alternate taxi routes are constructed based on surface surveillance records with respect to current procedural factors. A representative peak-hour traffic scenario is generated using historical data. The effectiveness of the proposed optimization methods is investigated.
MULTIFILE
Traditional IMU based PDR systems suffer from rapidly growing drift effects due to the inherent bias of the inertial sensor. Many existing solutions to mitigate this problem use aiding sensors or information as heuristics or map data. We propose a new optimization framework to solve the PDR estimation problem where the sensors biases are explicitly included as state variables and therefore be used to correct for bias effects in the PDR. By using a smoothing approach and exploiting the rigid structure of a MIMU array one can solve for the slowly varying sensor biases. This paper presents the method and gives an exemplary result of a walking trial. Good agreements in the position and orientation with an optical reference system were found. Moreover, accelerometer and gyroscope biases could be estimated accordingly. Further research includes the performance of more experiments under various conditions such that a more quantitative evaluation can be obtained. In addition, an exploration of a (pseudo) realtime filter version would be valuable such that the system can be applied online.
MULTIFILE
Dit is het eindrapport van de Global mOralHealth bijeenkomst georganiseerd door de Wereldgezondheidsorganisatie (WHO) en de universiteit van Montpellier. Docent Mondzorgkunde - Janneke Scheerman en lid van het lectoraat GGZ verpleegkunde - woonde deze bijeenkomst in oktober 2018 bij en droeg bij aan het rapport: https://www.inholland.nl/nieuws/be-helthy-be-mobile/ Als vervolg op de Global mOralHealth bijeenkomst wordt het mOralHealth handboek ontwikkeld, waaraan Janneke meeschrijft. In het handboek worden de procedures voor het ontwikkelen van mOralHealth interventies beschreven.
LINK
Treatment of crops with insecticides remains essential because globally more than 75 billion dollars is lost through crop destruction by invasive insects. However it is accompanied by severe disadvantages including i. increasing resistance of the target insects against insecticides and ii. the undesired lethality of beneficial insects such as bees and other pollinator species. The significant reduction of insect species during the last years, at least partly caused by the presently available insecticides has also effects on insect-eating species. Last but not least the presence of residual amount of insecticides in the environment (soil and plants), because of poor (bio)degradation, is another distinct disadvantage. Therefore, the overall aim of this proposal is to design and synthesize peptide based biopesticides. This should lead to Nature inspired green alternatives for insect control because "Peptides" are the small equivalents of "proteins", that are biomolecules, which are universally present in all organisms and subject to their natural biodegradation mechanisms, as well as also chemically degraded in the soil (water, heat, UV, oxygen). Design and synthesis of these environmentally benign compounds will eventually take place in a founded company called "INNOVAPEPLINE". Evaluation of candidate peptide based biopesticides can be carried out in collaboration with a recently founded company (spin-out of the University of Glasgow) called "SOLASTA BIO" (founders professors Shireen Davies, Julian Dow and Rob Liskamp) and/or with other (third) parties such as the University of Wageningen. Upon recent identification of promising candidate compounds ("leads"), chemical optimization studies of leads will take place, followed by evaluation in field trials. In this proposal design, synthesis and chemical optimization of the biological activity of new peptides and development of methods to monitor their biodegradation rate will take place. Thereby expanding the repertoire of peptide based biopesticides. (292 words)