Although governments are investing heavily in big data analytics, reports show mixed results in terms of performance. Whilst big data analytics capability provided a valuable lens in business and seems useful for the public sector, there is little knowledge of its relationship with governmental performance. This study aims to explain how big data analytics capability led to governmental performance. Using a survey research methodology, an integrated conceptual model is proposed highlighting a comprehensive set of big data analytics resources influencing governmental performance. The conceptual model was developed based on prior literature. Using a PLS-SEM approach, the results strongly support the posited hypotheses. Big data analytics capability has a strong impact on governmental efficiency, effectiveness, and fairness. The findings of this paper confirmed the imperative role of big data analytics capability in governmental performance in the public sector, which earlier studies found in the private sector. This study also validated measures of governmental performance.
MULTIFILE
Big data analytics received much attention in the last decade and is viewed as one of the next most important strategic resources for organizations. Yet, the role of employees' data literacy seems to be neglected in current literature. The aim of this study is twofold: (1) it develops data literacy as an organization competency by identifying its dimensions and measurement, and (2) it examines the relationship between data literacy and governmental performance (internal and external). Using data from a survey of 120 Dutch governmental agencies, the proposed model was tested using PLS-SEM. The results empirically support the suggested theoretical framework and corresponding measurement instrument. The results partially support the relationship of data literacy with performance as a significant effect of data literacy on internal performance. However, counter-intuitively, this significant effect is not found in relation to external performance.
MULTIFILE
The Research Group for Governmental Communication has carried out a trend study of governmental communication within The Netherlands (1). Research topics were: the major tasks for communication, current issues, profiling the communication department, and policy plans for communication. Another study focused on quality control as a management function for the communication department (2). A tool was developed to measure the communication quality of governmental organisations. Looking back on the results of both studies we asked ourselves the question: How can the academic field pursue the research of communication practice in governmental organisations and then support this field with results? The article focuses on governmental communication in The Netherlands, but the results might also be interesting for researchers and communication experts in governmental communication in other countries. The author argues that the priorities in the research agenda within the field of governmental communication should include: monitoring methods, quality control and accountability.
DOCUMENT
The ELSA AI lab Northern Netherlands (ELSA-NN) is committed to the promotion of healthy living, working and ageing. By investigating cultural, ethical, legal, socio-political, and psychological aspects of the use of AI in different decision-makingcontexts and integrating this knowledge into an online ELSA tool, ELSA-NN aims to contribute to knowledge about trustworthy human-centric AI and development and implementation of health technology innovations, including AI, in theNorthern region.The research in ELSA-NN will focus on developing and mapping ELSA knowledge around three general concepts of importance for the development, monitoring and implementation of trustworthy and human-centric AI: availability, use,and performance. These concepts will be explored in two lines of research: 1) use case research investigating the use of different AI applications with different types of data in different decision-making contexts at different time periods duringthe life course, and 2) an exploration among stakeholders in the Northern region of needs, knowledge, (digital) health literacy, attitudes and values concerning the use of AI in decision-making for healthy living, working and ageing. Specificfocus will be on investigating low social economic status (SES) perspectives, since health disparities between high and low SES groups are growing world-wide, including in the Northern region and existing health inequalities may increase with theintroduction and use of innovative health technologies such as AI.ELSA-NN will be integrated within the AI hub Northern-Netherlands, the Health Technology Research & Innovation Cluster (HTRIC) and the Data Science Center in Health (DASH). They offer a solid base and infrastructure for the ELSA-NNconsortium, which will be extended with additional partners, especially patient/citizens, private, governmental and researchrepresentatives, to have a quadruple-helix consortium. ELSA-NN will be set-up as a learning health system in which much attention will be paid to dialogue, communication and education.
The postdoc candidate, Sondos Saad, will strengthen connections between research groups Asset Management(AM), Data Science(DS) and Civil Engineering bachelor programme(CE) of HZ. The proposed research aims at deepening the knowledge about the complex multidisciplinary performance deterioration prediction of turbomachinery to optimize cleaning costs, decrease failure risk and promote the efficient use of water &energy resources. It targets the key challenges faced by industries, oil &gas refineries, utility companies in the adoption of circular maintenance. The study of AM is already part of CE curriculum, but the ambition of this postdoc is that also AM principles are applied and visible. Therefore, from the first year of the programme, the postdoc will develop an AM material science line and will facilitate applied research experiences for students, in collaboration with engineering companies, operation &maintenance contractors and governmental bodies. Consequently, a new generation of efficient sustainability sensitive civil engineers could be trained, as the labour market requires. The subject is broad and relevant for the future of our built environment being more sustainable with less CO2 footprint, with possible connections with other fields of study, such as Engineering, Economics &Chemistry. The project is also strongly contributing to the goals of the National Science Agenda(NWA), in themes of “Circulaire economie en grondstoffenefficiëntie”,”Meten en detecteren: altijd, alles en overall” &”Smart Industry”. The final products will be a framework for data-driven AM to determine and quantify key parameters of degradation in performance for predictive AM strategies, for the application as a diagnostic decision-support toolbox for optimizing cleaning &maintenance; a portfolio of applications &examples; and a new continuous learning line about AM within CE curriculum. The postdoc will be mentored and supervised by the Lector of AM research group and by the study programme coordinator(SPC). The personnel policy and job function series of HZ facilitates the development opportunity.