Recent research has indicated an increase in the likelihood and impact of tree failure. The potential for trees to fail relates to various biomechanical and physical factors. Strikingly, there seems to be an absence of tree risk assessment methods supported by observations, despite an increasing availability of variables and parameters measured by scientists, arborists and practitioners. Current urban tree risk assessments vary due to differences in experience, training, and personal opinions of assessors. This stresses the need for a more objective method to assess the hazardousness of urban trees. The aim of this study is to provide an overview of factors that influence tree failure including stem failure, root failure and branch failure. A systematic literature review according to the PRISMA guidelines has been performed in databases, supported by backward referencing: 161 articles were reviewed revealing 142 different factors which influenced tree failure. A meta-analysis of effect sizes and p-values was executed on those factors which were associated directly with any type of tree failure. Bayes Factor was calculated to assess the likelihood that the selected factors appear in case of tree failure. Publication bias was analysed visually by funnel plots and results by regression tests. The results provide evidence that the factors Height and Stem weight positively relate to stem failure, followed by Age, DBH, DBH squared times H, and Cubed DBH (DBH3) and Tree weight. Stem weight and Tree weight were found to relate positively to root failure. For branch failure no relating factors were found. We recommend that arborists collect further data on these factors. From this review it can further be concluded that there is no commonly shared understanding, model or function available that considers all factors which can explain the different types of tree failure. This complicates risk estimations that include the failure potential of urban trees.
MULTIFILE
BACKGROUND: Patients who underwent surgery for aortic coarctation (COA) have an increased risk of arterial hypertension. We aimed at evaluating (1) differences between hypertensive and non-hypertensive patients and (2) the value of cardiopulmonary exercise testing (CPET) to predict the development or progression of hypertension. METHODS: Between 1999 and 2010, CPET was performed in 223 COA-patients of whom 122 had resting blood pressures of <140/90 mmHg without medication, and 101 were considered hypertensive. Comparative statistics were performed. Cox regression analysis was used to assess the relation between demographic, clinical and exercise variables and the development/progression of hypertension. RESULTS: At baseline, hypertensive patients were older (p=0.007), were more often male (p=0.004) and had repair at later age (p=0.008) when compared to normotensive patients. After 3.6 ± 1.2 years, 29/120 (25%) normotensive patients developed hypertension. In normotensives, VE/VCO2-slope (p=0.0016) and peak systolic blood pressure (SBP; p=0.049) were significantly related to the development of hypertension during follow-up. Cut-off points related to higher risk for hypertension, based on best sensitivity and specificity, were defined as VE/VCO2-slope ≥ 27 and peak SBP ≥ 220 mmHg. In the hypertensive group, antihypertensive medication was started/extended in 48/101 (48%) patients. Only age was associated with the need to start/extend antihypertensive therapy in this group (p=0.042). CONCLUSIONS: Higher VE/VCO2-slope and higher peak SBP are risk factors for the development of hypertension in adults with COA. Cardiopulmonary exercise testing may guide clinical decision making regarding close blood pressure control and preventive lifestyle recommendations.
Hematological malignancies and treatment with hematopoietic SCT are known to affect patients’ quality of life. The problem profile and care needs of this patient group need clarification, however. This study aimed to assess distress, problems and care needs after allo- or auto-SCT, and to identify risk factors for distress, problems or care needs. In this cross-sectional study, patients treated with allo-SCT or auto-SCT for hematological malignancies completed the Distress Thermometer and Problem List. Three patient groups were created: 0–1, 1–2.5 and 2.5–5.5 years after transplantation. After allo-SCT, distress and the number of problems tended to be lower with longer follow-up. After auto-SCT, distress was highest at 1–2.5 year(s). Patients mainly reported physical problems, followed by cognitive-emotional and practical problems. A minority reported care needs. Risk factors for distress as well as problems after allo-SCT included younger age, shorter time after transplantation and GVHD. A risk factor for distress as well as problems after auto-SCT was the presence of comorbid diseases. Up to 5 years after auto-SCT or allo-SCT, patients continue to experience distress and problems. Judged by prevalence, physical problems are first priority in supportive care, followed by cognitive-emotional and practical problems.