Computers create environmental problems. Their production requires electricity, raw materials, chemical materials and large amounts of water, and supplies (often toxic) waste. They poison dumping sites and pollute groundwater. In addition, the energy consumption in IT is growing exponentially, with and without the use of ‘green’ energy. Increasing environmental awareness within information science has led to discussions on sustainable development. ‘Green Computing’ has been introduced: the study and practice of environmentally sustainable computing or IT. It is necessary to pay attention to the value of the information stored. In this paper, we explored the possibilities of combining Green Computing components with two theories of archival science (Archival Retention Levels and Information Value Chain respectively) to curb unnecessary power consumption. Because in 2012 storage networks were responsible for almost 30 % of total IT energy costs, reducing the amount of stored information by the disposal of unneeded information should have a direct effect on IT energy use. Based on a theoretical analysis and qualitative interviews with an expert group, we developed a ‘Green Archiving’ model, that could be used by organizations to 1] reduce the amount of stored information, and 2] reduce IT power consumption. We used two exploratory case studies to research the viability of this model.
MULTIFILE
The development of the World Wide Web, the emergence of social media and Big Data have led to a rising amount of data. Infor¬mation and Communication Technol¬ogies (ICTs) affect the environment in various ways. Their energy consumption is growing exponentially, with and without the use of ‘green’ energy. Increasing envi¬ronmental aware¬ness has led to discussions on sustainable development. The data deluge makes it not only necessary to pay attention to the hard‑ and software di¬mensions of ICTs but also to the ‘value’ of the data stored. In this paper, we study the possibility to methodically reduce the amount of stored data and records in organizations based on the ‘value’ of informa¬tion, using the Green Archiving Model we have developed. Reducing the amount of data and records in organizations helps in allowing organizations to fight the data deluge and to realize the objectives of both Digital Archiving and Green IT. At the same time, methodi¬cally deleting data and records should reduce the con¬sumption of electricity for data storage. As a consequencs, the organizational cost for electricity use should be reduced. Our research showed that the model can be used to reduce [1] the amount of data (45 percent, using Archival Retention Levels and Retention Schedules) and [2] the electricity con¬sumption for data storage (resulting in a cost reduction of 35 percent). Our research indicates that the Green Ar¬chiving Model is a viable model to reduce the amount of stored data and records and to curb electricity use for storage in organi¬zations. This paper is the result of the first stage of a research project that is aimed at devel¬oping low power ICTs that will automa¬tically appraise, select, preserve or permanently delete data based on their ‘value’. Such an ICT will automatically reduce storage capacity and reduce electricity con¬sumption used for data storage. At the same time, data dispos¬al will reduce overload caused by storing the sa¬me data in different for¬mats, it will lower costs and it reduces the po¬tential for liability.
DOCUMENT
Information and Communication Technologies (ICTs) affect the environment in various ways. Their energy consumption is growing exponentially, with and without the use of ‘green’ energy. Increasing environmental awareness within information science has led to discussions on sustainable development. ‘Green Computing’ has been introduced: the study and practice of environmentally sus- tainable computing. This can be defined as ‘designing, manufacturing, using, and disposing of com- puters, servers, and associated subsystems - such as monitors, printers, storage devices, and net- working and communications systems - efficiently and effectively with minimal or no impact on the en- vironment’. Nevertheless, the data deluge makes it not only necessary to pay attention to the hard- and software dimensions of ICTs but also to the value of the data stored. We explore the possibilities to use information and archival science to reduce the amount of stored data. In reducing this amount of stored data, it’s possible to curb unnecessary power consumption. The objectives of this paper are to develop a model (and test its viablility) to [1] increase awareness in organizations for the environ- mental aspects of data storage, [2] reduce the amount of stored data, and [3] reduce power consump- tion for data storage. This model integrates the theories of Green Computing, Information Value Chain (IVC) and Archival Retention Levels (ARLs). We call this combination ‘Green Archiving’. Our explora- tory research was a combination of desk research, qualitative interviews with information technology and information management experts, a focus group, and two exploratory case studies. This paper is the result of the first stage of a research project that is aimed at developing low power ICTs that will automatically appraise, select, preserve or permanently delete data based on their value. Such an ICT will automatically reduce storage capacity and curb power consumption used for data storage. At the same time, data disposal will reduce overload caused by storing the same data in different for- mats, it will lower costs and it reduces the potential for liability.
DOCUMENT
The development of the World Wide Web, the emergence of social media and Big Data have led to a rising amount of data. Information and Communication Technologies (ICTs) affect the environment in various ways. Their energyconsumption is growing exponentially, with and without the use of ‘green’ energy. Increasing environmental awareness has led to discussions on sustainable development. The data deluge makes it not only necessary to pay attention to the hard- and software dimensions of ICTs but also to the ‘value’ of the data stored. In this paper, we study the possibility to methodically reduce the amount of stored data and records in organizations based on the ‘value’ of information, using the Green Archiving Model we have developed. Reducing the amount of data and records in organizations helps in allowing organizations to fight the data deluge and to realize the objectives of both Digital Archiving and Green IT. At the same time, methodically deleting data and records should reduce the consumption of electricity for data storage. As a consequence, the organizational cost for electricity use should be reduced. Our research showed that the model can be used to reduce [1] the amount of data (45 percent, using Archival Retention Levels and Retention Schedules) and [2] the electricity consumption for data storage (resulting in a cost reduction of 35 percent). Our research indicates that the Green Archiving Model is a viable model to reduce the amount of stored data and records and to curb electricity use for storage in organizations. This paper is the result of the first stage of a research project that is aimed at developing low power ICTs that will automatically appraise, select, preserve or permanently delete data based on their ‘value’. Such an ICT will automatically reduce storage capacity and reduce electricity consumption used for data storage. At the same time, data disposal will reduce overload caused by storing the same data in different formats, it will lower costs and it reduces the potential forliability.
DOCUMENT
How to encourage students to choose for a future in agrifood? Not like we always did. The labor market shows an increasing shortage. The agrifood sector plays a significant role in achieving global food security and environmental sustainability. Scholars hardly realize what they can contribute to these social, ecologic and economic issues. The sector needs to expand the range of career opportunities in the agriculture-food-nutrition-environment nexus. Most importantly, it means creating incentives that encourage young people to see agrifood as one of the best options for a career choice. We developed inspiring learning materials to achieve awareness in secondary schools in the Netherlands. A Genomics Cookbook with food metaphors to explain biological principles is highly appreciated by both teachers and students. It is a way to increase influx into green colleges and universities, and thereby efflux to the agrifood sector.
MULTIFILE
Boekbespreking van ´How to do action research for transformations at a time of eco-social crisis´ van auteur Hilary Bradbury. Hilary Bradbury geeft een overzicht van jaren van innovatie binnen hedendaags actieonderzoek en laat zien waar actieonderzoek voor transformaties (ART) op gericht is: op het reageren op klimaatverandering en het bereiken van wereldwijde duurzaamheidsdoelen. Het boek besteedt bijzondere aandacht aan sociale rechtvaardigheid en brengt mens- en sociale wetenschappen samen, waarbij de impact wordt onderzocht die actieonderzoek kan hebben.
MULTIFILE
The design of health game rewards for preadolescents Videogames are a promising strategy for child health interventions, but their impact can vary depending on the game mechanics used. This study investigated achievement-based ‘rewards’ and their design among preadolescents (8-12 years) to assess their effect and explain how they work. In a 2 (game reward achievement system: social vs. personal) x 2 (game reward context: in-game vs. out-game) between-subjects design, 178 children were randomly assigned to one of four conditions. Findings indicated that a ‘personal’ achievement system (showing one’s own high scores) led to more attention and less frustration than a ‘social’ achievement system (showing also high scores of others) which, in turn, increased children’s motivation to make healthy food choices. Furthermore, ‘out’-game rewards (tangible stickers allocated outside the game environment) were liked more than ‘in’-game rewards (virtual stickers allocated in the game environment), leading to greater satisfaction and, in turn, a higher motivation to make healthy food choices.
LINK
The central thesis of this book is that access to information represents a vital aspect of contemporary society, encompassing participation, accountability, governance, transparency, the production of products, and the delivery of services. This view is widely shared, with commentators and scholars agreeing that access to information is a key factor in maintaining societal and economic stability. However, having access to information does not guarantee its accessibility. Assuming that information is (cognitively) interpretable is incorrect, as many practical examples illustrate. In the first chapter, this book offers insights into the challenge of access to information in a digitalized world. The concepts of access and accessibility are addressed, elucidating their meanings and delineating the ways in which they are influenced by the exponential growth of information. It examines how information technology introduces a novel access paradox. The second chapter examines the challenges to access to and accessibility of information in a digitalized, hybrid world where code may be law, where there is an inescapable loss of privacy, where doing business opens and restricts access, where literacy is a necessity to survive ‘digital divides,’ and where environmental concerns may have an adverse effect on high expectations. The third chapter presents a review of theoretical approaches to access and accessibility from seven different research perspectives: information access disparity, information seeking, information retrieval, information quality, information security, information management, and archives management. Six approaches to information access and accessibility are identified: [1] social, economic, and political participation; [2] ‘smart’ and evolving technology; [3] power and control; [4] sense-making; [5] knowledge representations, and [6] information survival. The fourth chapter addresses the bottlenecks and requirements for information access and accessibility, culminating in a checklist for organizations to assess these requirements within their own business processes. In the fifth chapter, some perspectives on artificial intelligence and the future of information access are presented. The sixth chapter represents an attempt to draw conclusions and to bring this book to a close.
DOCUMENT
People during this Covid-19 year were forced to spend more time at home due to the lockdown and extreme weather conditions. Before the crisis, people already spent approximately 90 percent of their time indoors and relied on nearby public outdoor spaces for social and physical activities to maintain their health and well-being. During the pandemic, unhealthy, overcrowded, uncomfortable outdoor public spaces and a lack of greenery likely encouraged people to stay indoors even more. In city centres, greenery is often scarce: municipalities struggle to find nature-based solutions that meet the multiple functions of these areas.Fortunately, pandemics appear to spur cities to create healthier, greener environments. The nineteenth-century cholera pandemics, for example, led many western cities to establish large public parks to act as green lungs. These include Central Park and Prospect Park in New York, designed by the influential landscape architect Frederick Law Olmsted. The Covid-19 crisis creates the momentum to bring nature back into our cities and to repair vital ecosystem functions and derived Urban Ecosystem Services (UESs).In this action-research study we adopted the Panarchy model and its principle that initiatives on a fine-grained scale can eventually have a positive impact on the entire ecosystem. Green interventions at street-level hold the promise that they may activate communities to initiate change for more social-ecological resilience. This paper describes two experimental projects: The Climate Cube, installed at a shopping centre in the Nieuw-West district in Amsterdam, and the Rewilding Stepping Stones in the centre of New Town Almere. The Climate Cube consists of a pergola, large, interconnected planter boxes, and benches on each side and acts as a cool social spot. The aim is to explore how it might improve visitors’ (thermal) comfort and to build community support before larger redevelopment projects are launched. The Rewilding Stepping Stones are made of biobased and recycled materials and planted with native species to encourage nature to return to the city centre.
DOCUMENT
The hospitality industry contributes significantly to global climate change through its high resource consumption and emissions due to travel. As public pressure for hotels to develop sustainability initiatives to mitigate their footprint grows, a lack of understanding of green behavior and consumption of hotel guests hinders the adoption of effective programs. Most tourism research thus far has focused on the ecotourism segment, rather than the general population of travelers, and while research in consumer behavior shows that locus of control (LOC) and guilt can influence guests’ environmental behavior, those factors have not been tested with consideration of the subjective norm to measure their interaction and effect on recycling behavior. This study first examines the importance of internal and external LOC on factors for selecting hotel accommodation and the extent of agreement about hotel practices and, second, examines the differences in recycling behavior among guests with internal versus external LOC under levels of positive versus negative subjective norms and feelings of low versus high guilt.
MULTIFILE