Cities worldwide are growing at unprecedented rates, compromising their surrounding landscapes, and consuming many scarce resources. As a consequence, this will increase the compactness of cities and will also decrease the availability of urban green space. In recent years, many Dutch municipalities have cut back on municipal green space and itsmaintenance. To offer a liveable environment in 30 to 50 years, cities must face challenges head-on and strive to create green urban areas that build on liveable and coherent sustainable circular subsystems.
MULTIFILE
The aim of this study is to determine the contribution of student interventions to urban greening processes. In two Dutch cities action research was conducted, including reflexive interviews a year after the first intervention, to assess factors causing change in the socio-ecological system. Results show that students and network actors were mutually learning, causing the empowerment of actors in that network by adding contextualized knowledge, enlarging the social network, expanding the amount of interactions in the socio-ecological system and speeding up the process. Students brought unique qualities to the process: time, access to stakeholders who tend to distrust the municipality and a certain open-mindedness. Their mere presence made a difference and started a process of change. However, university staff needed to keep the focus on long-term effects and empowerment, because students did not oversee that. After a year, many new green elements had been developed or were in the planning phase. In Enschede, the municipality districtmanagers were part of the learning network, which made it easier to cause changes in the main ecological network. In Haarlem however, no change took place in the main ecological network managed by the municipality, because no political empowerment of the civil society group had developed yet.
MULTIFILE
The Steenbreek program is a private Dutch program which aims to involve citizens, municipalities and other stakeholders in replacing pavement with vegetation in private gardens. The Dutch approach is characterized by minimal governmental incentives or policy, which leaves a niche for private initiatives like Steenbreek, that mainly work on behavioural change. The aim of this paper is to build a model based on theory that can be used to improve and better evaluate depaving actions that are based on behavioural change. We tested this garden greening behaviour model in the Steenbreek program. The main result is that the model provides an understanding of the ‘how and why’ of the Steenbreek initiatives. Based on this we are able to provide recommendations for the improvement of future initiatives. Steenbreek covers a wide range of projects that together, in very different ways, take into account elements of the theoretical framework; either more on information factors, or on supporting factors, sometimes taking all elements together in a single action. This focus is sometimes understandable when just one element is needed (e.g., support), sometimes more elements could be taken into account to be more effective. If a certain element of the framework is lacking, the change of behaviour will not (or will only partly) take place. The model also gives insight into a more specific approach aimed at the people most susceptible to changing their behaviour, which would make actions more effective.
MULTIFILE
UNStudio, een in Amsterdam gevestigd, internationaal toonaangevend architectenbureau, wil hun Green Mile-plan1 voor het centrum van Amsterdam uitwerken om een 'post-pandemisch groen stedenbouwkundig ontwerp' voor de stad te onderzoeken - kunnen groene gebieden worden (her) ontworpen om ruimte aan voetgangers te geven, terwijl voorkomen wordt dat mensen zich niet op dezelfde plek ophopen? De Corona-pandemie benadrukte ook de noodzaak om vaart te zetten achter duurzaamheidsdoelstellingen, waaronder de ambitie om groenere stedelijke omgevingen te creëren. In dit voorstel wordt stadsmeubilair voor de Green Mile ontworpen en gerealiseerd met hergebruikte materialen, en met post-pandemische stedenbouwkundige en bouwkundige principes. GPGroot en Schijf, leveranciers van rest- en gebruikte bouwmaterialen2, willen hun kennis over circulaire materiaalverwerking en -levering in de stedelijke context graag verder ontwikkelen. Het initiatief van UNStudio biedt een unieke kans om deze kennis te ontwikkelen, in samenwerking met de HvA en het onderzoek in de Robot Studio, dat zich tot nu toe met name richt op circulair gebruik van hout voor binnen-toepassingen. Het project volgt een iteratief ontwerpproces van parametrisch ontwerp en digitale productie. Bij het ontwerp wordt rekening gehouden met functionele eisen en beschikbare materialen, evenals met de specifieke kenmerken van de stedelijke context waar het prototype zou kunnen worden geplaatst. De productie van het prototype zal worden uitgevoerd met 6-assige robots in de HvA Robot Studio. De resultaten zijn ontwerpen en een prototype, maar ook kennis over het verbinden van parametrisch ontwerp en robotproductie met buitentoepassingen, met bijzondere aandacht voor rest- en gebruikte materialen. Innovatieve aspecten zijn de overstap naar structureel belaste buitentoepassingen en het gebruik van een breder scala aan materialen dan alleen hout. Hiermee kan het project bijdragen aan de ontwikkeling van “smart industry” en de circulaire economie, beide relevant voor de maatschappelijke uitdagingen zoals vastgelegd in de nationale Kennis- en Innovatie-Agenda’s voor wetenschap en technologie.
The message we intend to communicate is that in the future, our cities can (partly) feed themselves with healthy foods grown in microbial gardens, which can be part of a household kitchen or community garden for providing fresh green "vegetables" where the energy for the artificial LED lighting for the microbial garden is coming from solar panels on roofs thereby making this system free from fossil energy.For Floriade 2022, we would like to introduce the Urban Microbial garden pop-up restaurant for feeding and greening the city. The menu will include a speciality microbiota vegan burger made from algae, seaweed, fungi and fava beans served on dishes made from baked mycelium. Our objective is to elicit consumer perception and opinion on the future of our new microbial food chain, which is fully sustainable and safer for the environment. Consumer opinions will be video recorded and compiled into a short movie/video for further inspiration and analysis for product/service development. This pop-up restaurant is a logical extension of the Art-Work by 4F.STUDIO (Kim van den Belt, Joshua Kelly, Steven Wobbes) already present in Kavel 123 at Floriade as part of the Light Challenge. The artwork depicts a future object for community gardens which supports the idea of locally produced microbes. Since we already have work at Floriade, this living-lab project has the benefit of broadening the vision of their work through more in-depth and visceral feedback.
In recent years there has been an increasing need for nature inclusive solutions in the construction sector. The practice asks for new solutions contributing to the development of sustainable, resilient and liveable cities. Under the guidance of the Dutch government, greening of the cities has become one of the aims of municipalities in the Netherlands and the focus of some emerging companies and design offices. In cities, quay masonry walls, thanks to their close contact with water, have the potential to be ecologically engineered to favour vegetation, thereby contributing to the renaturing of urban areas. By building a prototype of an innovative masonry building system, this project aims to investigate the potential for improving the integration between masonry quay walls and vegetation. The set-up consists of a dry-stacking system for brick masonry: strong polyamide elements interconnect the bricks, providing strength to the masonry without the need for mortar. The space in between bricks, traditionally filled with mortar, is to be filled with compost material, providing an ideal substrate for plant growth and a buffer for water storage (figure 1). In addition to improved integration between masonry walls and vegetation, the proposed dry-stacking system allows for easy reuse of bricks, thereby contributing to circularity and sustainability of the building industry. The project broadens and strengthens the national network in the field of urban ecology by bringing together expertise from the fields of architecture, ecology and the construction sector, from both academia and practice.