BACKGROUND: Intentional weight loss in obese older adults is a risk factor for accelerated muscle mass loss. We investigated whether a high protein diet and/or resistance exercise preserves fat free mass (FFM) during weight loss in overweight and obese older adults.METHODS: We included 100 overweight and obese adults (55-80 year) in a randomized controlled trial (RCT) with a 2 × 2 factorial design and intention-to-treat analysis. During a 10-week weight loss program all subjects followed a hypocaloric diet. Subjects were randomly allocated to either a high protein (1.3 g/kg body weight) or normal protein diet (0.8 g/kg), with or without a resistance exercise program 3 times/week. FFM was assessed by air displacement plethysmography.RESULTS: At baseline, mean (±SD) BMI was 32 ± 4 kg/m(2). During intervention, protein intake was 1.13 ± 0.35 g/kg in the high protein groups vs. 0.98 ± 0.29 in the normal protein groups, which reflects a 16.3 ± 5.2 g/d higher protein intake in the high protein groups. Both high protein diet and exercise did not significantly affect change in body weight, FFM and fat mass (FM). No significant protein*exercise interaction effect was observed for FFM. However, within-group analysis showed that high protein in combination with exercise significantly increased FFM (+0.6 ± 1.3 kg, p = 0.011).CONCLUSION: A high protein diet, though lower than targeted, did not significantly affect changes in FFM during modest weight loss in older overweight and obese adults. There was no significant interaction between the high protein diet and resistance exercise for change in FFM. However, only the group with the combined intervention of high protein diet and resistance exercise significantly increased in FFM.TRIAL REGISTRATION: Dutch Trial Register, number NTR4556, date 05-01-2014.
Background & aims: High protein delivery during early critical illness is associated with lower mortality, while energy overfeeding is associated with higher mortality. Protein-to-energy ratios of traditional enteral formulae are sometimes too low to reach protein targets without energy overfeeding. This prospective feasibility study aimed to evaluate the ability of a new enteral formula with a high protein-to-energy ratio to achieve the desired protein target while avoiding energy overfeeding.Methods: Mechanically ventilated non-septic patients received the high protein-to-energy ratio nutrition during the first 4 days of ICU stay (n = 20). Nutritional prescription was 90% of measured energy expenditure. Primary endpoint was the percentage of patients reaching a protein target of ≥1.2 g/kg ideal body weight on day 4. Other endpoints included a comparison of nutritional intake to matched historic controls and the response of plasma amino acid concentrations. Safety endpoints were gastro-intestinal tolerance and plasma urea concentrations. Results: Nineteen (95%) patients reached the protein intake target of ≥1.2 g/kg ideal body weight on day 4, compared to 65% in historic controls (p = 0.024). Mean plasma concentrations of all essential amino acids increased significantly from baseline to day 4. Predefined gastro-intestinal tolerance was good, but unexplained foul smelling diarrhoea occurred in two patients. In one patient plasma urea increased unrelated to acute kidney injury. Conclusions: In selected non-septic patients tolerating enteral nutrition, recommended protein targets can be achieved without energy overfeeding using a new high protein-to-energy ratio enteral nutrition.
MULTIFILE
The critical care community still has mixed feelings when considering the optimal nutrition of intensive care unit (ICU) patients, which is understandable as randomized controlled trials have not been very helpful in improving clinical practice. There have been no randomized controlled trials (RCTs) to contribute to the discussion, especially concerning the role of enterally fed protein in optimal critical care. Recent studies on the route of feeding have shown that enteral nutrition (EN) is not necessarily superior to parenteral nutrition (PN) [1, 2]. There appears to be a strong consensus, with backup from a meta-analysis, on the preferential use of EN over PN [3]. The infection rate was especially used as an argument; however, this is not substantiated in recent trials [1, 2]. We have to consider how applicable this current knowledge is to all ICU patients. Early EN is still the preferred way of feeding [3]. Starting feeding early may improve the outcome of ICU patients. RCTs have all investigated (supplemental parenteral) energy delivery [4]. Only two trials have ‘considered’ protein: the PERMIT trial [5] (protein supplemented, equal level) and EAT-ICU trial [6] (protein supplemented, higher level). Early energy delivery should be applied cautiously since it appears to be related to worse outcome in ICU patients [7, 8, 9]. Therefore, and from the perspective of clinical practice, the Swiss Supplemental PN (SPN) trial appears to provide the most logical design [10]—start with early EN and evaluate on day 3 what the level of energy delivery is; when delivery levels are low (< 60%) start supplementation PN. In clinical practice in our ICU the enteral feeding levels are high enough to avoid PN supplementation, which therefore restricts the specific indication to use PN. The focus of this research has been caloric delivery. There are more than enough observational data to support that higher protein delivery is associated with improved outcome in ICU patients [7, 8, 9]. These observational studies clearly show the benefit of higher protein delivery. However, they are considered relatively weak evidence since illness is considered a confounding factor in the relationship between delivery and outcome for which we cannot completely adjust. Randomized trials have not been conducted, although two trials with randomized high(er) amino acid infusion are available and somewhat contradicting [11, 12]. As with the studies on caloric delivery, the studies on protein have been hampered by insufficient knowledge on energy and protein metabolism under these (patho)physiological circumstances in the ICU patient [7, 8, 9]. Therefore, mechanistic studies on the protein physiology in ICU patients is an essential and current development. The Swedish group of Wernerman and Rooyackers has provided crucial information on the topic. They showed that it was possible to change protein balance during the early phase of admission to the ICU from negative to positive by a short-term (3-h) high-level (1 g/kg/day) amino acid (AA) infusion [13]. This observation was very important to help understand the physiology since it showed that, under these circumstances of critical illness, some basic principles of nutrition still perform well. In the December 2017 issue of Critical Care, Sundstrom et al. showed that the effect of supplemental AA infusion at 3 h is still present at 24 h [14]. Why is this so important to know? We know from extensive studies in sports and the elderly that protein synthesis can be stimulated by bolus protein feeding; however, we know relatively little about the effects of continuous (low dose per time unit) feeding. While the absolute levels of protein balance still have to be considered with caution (e.g., choice of tracer), and we are not completely sure where the protein is going, we now know this positive effect on protein balance is lasting. The next challenge is to reconnect this physiological information with the outcome of ICU patients. We have shown that muscle (protein) mass at admission to the ICU is relevant for the outcome of ICU patients [15]. We do not know if we can change muscle mass and outcome of ICU patients with protein nutrition. The study by Sundstrom et al. [14] is very promising for protein balance, but will that be enough to change outcome? And, if so, is that true for all patients—does one size fit all? The ICU patient group is heterogeneous. Earlier, we found high protein delivery to be associated with lower mortality, except for sepsis patients and patients with early caloric overfeeding [7]. The EAT-ICU trial did not find an effect of early goal-directed feeding on physical component score at 6 months or on mortality [6]. Goal-directed feeding included feeding energy based on indirect calorimetry and protein up to 1.5 g/kg/day from day 1. Feeding calories up to the measured caloric target from day 1 may be equal to caloric overfeeding [7]. The 47% of patients with sepsis in the EAT-ICU trial might also not benefit from the higher protein feeding [7]. Therefore, the effects of protein and energy cannot be assessed individually from this trial. Ferrie et al. showed interesting differences in muscle mass and function between an AA infusion rate of 0.8 and 1.2 g/kg/day [12], but not all patients are equal—one size does not fit all! Those patients with a low protein reserve (low muscle mass) may be at highest risk in the ICU and may benefit more from intervention with early protein nutrition. We have to await further studies, including randomized studies and post-hoc observational studies, to further develop this area of interest. The studies trying to understand the mechanism behind the physiological effect are important as well; we might come nearer to the truth of what works and what does not work in ICU nutrition.
Micro and macro algae are a rich source of lipids, proteins and carbohydrates, but also of secondary metabolites like phytosterols. Phytosterols have important health effects such as prevention of cardiovascular diseases. Global phytosterol market size was estimated at USD 709.7 million in 2019 and is expected to grow with a CAGR of 8.7% until 2027. Growing adoption of healthy lifestyle has bolstered demand for nutraceutical products. This is expected to be a major factor driving demand for phytosterols. Residues from algae are found in algae farming and processing, are found as beachings and are pruning residues from underwater Giant Kelp forests. Large amounts of brown seaweed beaches in the province of Zeeland and are discarded as waste. Pruning residues from Giant Kelp Forests harvests for the Namibian coast provide large amounts of biomass. ALGOL project considers all these biomass residues as raw material for added value creation. The ALGOL feasibility project will develop and evaluate green technologies for phytosterol extraction from algae biomass in a biocascading approach. Fucosterol is chosen because of its high added value, whereas lipids, protein and carbohydrates are lower in value and will hence be evaluated in follow-up projects. ALGOL will develop subcritical water, supercritical CO2 with modifiers and ethanol extraction technologies and compare these with conventional petroleum-based extractions and asses its technical, economic and environmental feasibility. Prototype nutraceutical/cosmeceutical products will be developed to demonstrate possible applications with fucosterol. A network of Dutch and African partners will supply micro and macro algae biomass, evaluate developed technologies and will prototype products with it, which are relevant to their own business interests. ALGOL project will create added value by taking a biocascading approach where first high-interest components are processed into high added value products as nutraceutical or cosmeceutical.
Micro and macro algae are a rich source of lipids, proteins and carbohydrates, but also of secondary metabolites like phytosterols. Phytosterols have important health effects such as prevention of cardiovascular diseases. Global phytosterol market size was estimated at USD 709.7 million in 2019 and is expected to grow with a CAGR of 8.7% until 2027. Growing adoption of healthy lifestyle has bolstered demand for nutraceutical products. This is expected to be a major factor driving demand for phytosterols.Residues from algae are found in algae farming and processing, are found as beachings and are pruning residues from underwater Giant Kelp forests. Large amounts of brown seaweed beaches in the province of Zeeland and are discarded as waste. Pruning residues from Giant Kelp Forests harvests for the Namibian coast provide large amounts of biomass. ALGOL project considers all these biomass residues as raw material for added value creation.The ALGOL feasibility project will develop and evaluate green technologies for phytosterol extraction from algae biomass in a biocascading approach. Fucosterol is chosen because of its high added value, whereas lipids, protein and carbohydrates are lower in value and will hence be evaluated in follow-up projects. ALGOL will develop subcritical water, supercritical CO2 with modifiers and ethanol extraction technologies and compare these with conventional petroleum-based extractions and asses its technical, economic and environmental feasibility. Prototype nutraceutical/cosmeceutical products will be developed to demonstrate possible applications with fucosterol.A network of Dutch and African partners will supply micro and macro algae biomass, evaluate developed technologies and will prototype products with it, which are relevant to their own business interests. ALGOL project will create added value by taking a biocascading approach where first high-interest components are processed into high added value products as nutraceutical or cosmeceutical.
The seaweed aquaculture sector, aimed at cultivation of macroalgal biomass to be converted into commercial applications, can be placed within a sustainable and circular economy framework. This bio-based sector has the potential to aid the European Union meet multiple EU Bioeconomy Strategy, EU Green Deal and Blue Growth Strategy objectives. Seaweeds play a crucial ecological role within the marine environment and provide several ecosystem services, from the take up of excess nutrients from surrounding seawater to oxygen production and potentially carbon sequestration. Sea lettuce, Ulva spp., is a green seaweed, growing wild in the Atlantic Ocean and North Sea. Sea lettuce has a high nutritional value and is a promising source for food, animal feed, cosmetics and more. Sea lettuce, when produced in controlled conditions like aquaculture, can supplement our diet with healthy and safe proteins, fibres and vitamins. However, at this moment, Sea lettuce is hardly exploited as resource because of its unfamiliarity but also lack of knowledge about its growth cycle, its interaction with microbiota and eventually, possible applications. Even, it is unknown which Ulva species are available for aquaculture (algaculture) and how these species can contribute to a sustainable aquaculture biomass production. The AQULVA project aims to investigate which Ulva species are available in the North Sea and Wadden Sea which can be utilised in onshore aquaculture production. Modern genomic, microbiomic and metabolomic profiling techniques alongside ecophysiological production research must reveal suitable Ulva selections with high nutritional value for sustainable onshore biomass production. Selected Ulva spp lines will be used for production of healthy and safe foods, anti-aging cosmetics and added value animal feed supplements for dairy farming. This applied research is in cooperation with a network of SME’s, Research Institutes and Universities of Applied Science and is liaised with EU initiatives like the EU-COST action “SeaWheat”.