During the last decade, the relationship between university and non-university higher education institutions has changed. As a contribution to the knowledge economy, non-university higher education institutions are expected to educate their students in research activities. Previously, teaching was the main responsibility of lecturers in non-university higher education, while research hardly played a role. This paper is about the belief of lecturers in non-university higher education in their own research ability (research self-efficacy). In a survey study conducted among Dutch lecturers (N = 790), the research self-efficacy has been measured. A structural equation model shows the effects of personal aspects, mastery experience and organisational context on the research self-efficacy of lecturers. Research self-efficacy is also modelled in relation to lecturers’ need to work on professional development in research skills. Results show that research self-efficacy is mostly affected by aspects of mastery experience, in which the context is similar to the given task. Implications are discussed.
The internationalization of higher education has been driven by an increasingly globalized and interconnected world. One concept that embodies this internationalization process is global citizenship, which can be promoted through student mobility, internationalization-at-home, or other forms of intercultural learning. While global citizenship remains a broad and highly contested term, the increased interest of its role in higher education has inspired research in different fields. The aim of this paper is to provide a review of existing research approaches to studying global citizenship, and to formulate future research directions that may integrate these approaches into a holistic framework. By reviewing literature from different fields in the social sciences, we have identified three main research approaches: intercultural competence, social identification with a global community, and civic engagement. While each approach reflects an important dimension of global citizenship, they remain separate in the literature, complicating the understanding and application of global citizenship in higher education. Therefore, for each approach we present a general conceptualization and a brief overview of prior findings. We discuss how integrating these approaches can lead to a more holistic understanding of global citizenship and guide future avenues for research and practice in higher education.
The challenges we collectively face, such as climate change, are characterized by more complexity, interdependence, and dynamism than is common for educational practice. This presents a challenge for (university) education. These transition challenges are often described as wicked or VUCA (Volatile, Uncertain, Complex, and Ambiguous) problems. In response, educational innovations that are inspired by ecology such as living labs are starting to emerge, but little is known about how learners engage within and with these more ecological forms of education. This work is an exploratory study into how learners navigate VUCA learning environments linked to tackling sustainability transition challenges, with a focus on the positive qualities of these experiences. This is done through interpretative phenomenological analysis (IPA) of seven students (using semi-structured interviews) of the MSC Metropolitan Analysis, Design and Engineering program, a joint degree from Wageningen University and Delft University of Technology in the Netherlands. The main findings, which are both psychological and educational, of this exploration include openness to new experiences (1), flexibility (2), a process appreciation of learning (3), a desire to create a positive impact on one’s direct biophysical environment (4) and society (5). In addition, we discuss the potential limitations of the malleability of these different qualities and propose future avenues for research into ecological learning for universities. This work closes by highlighting recommendations for educators to consider when designing or engaging in ecological forms of higher education that connect students to sustainability transitions.
With increasing penetration rates of driver assistance systems in road vehicles, powerful sensing and processing solutions enable further automation of on-road as well as off-road vehicles. In this maturing environment, SMEs are stepping in and education needs to align with this trend. By the input of student teams, HAN developed a first prototype robot platform to test automated vehicle technology in dynamic road scenarios that include VRUs (Vulnerable Road Users). These robot platforms can make complex manoeuvres while carrying dummies of typical VRUs, such as pedestrians and bicyclists. This is used to test the ability of automated vehicles to detect VRUs in realistic traffic scenarios and exhibit safe behaviour in environments that include VRUs, on public roads as well as in restricted areas. Commercially available VRU-robot platforms are conforming to standards, making them inflexible with respect to VRU-dummy design, and pricewise they are far out of reach for SMEs, education and research. CORDS-VTS aims to create a first, open version of an integrated solution to physically emulate traffic scenarios including VRUs. While analysing desired applications and scenarios, the consortium partners will define prioritized requirements (e.g. robot platform performance, dummy types and behaviour, desired software functionality, etc.). Multiple robots and dummies will be created and practically integrated and demonstrated in a multi-VRU scenario. The aim is to create a flexible, upgradeable solution, published fully in open source: The hardware (robot platform and dummies) will be published as well-documented DIY (do-it-yourself) projects and the accompanying software will be published as open-source projects. With the CORDS-VTS solution, SME companies, researchers and educators can test vehicle automation technology at a reachable price point and with the necessary flexibility, enabling higher innovation rates.
Our country contains a very dense and challenging transport and mobility system. National research agendas and roadmaps of multiple sectors such as HTSM, Logistics and Agri&food, promote vehicle automation as a means to increase transport safety and efficiency. SMEs applying vehicle automation require compliance to application/sector specific standards and legislation. A key aspect is the safety of the automated vehicle within its design domain, to be proven by manufacturers and assessed by authorities. The various standards and procedures show many similarities but also lead to significant differences in application experience and available safety related solutions. For example: Industrial AGVs (Automated Guided Vehicles) have been around for many years, while autonomous road vehicles are only found in limited testing environments and pilots. Companies are confronted with an increasing need to cover multiple application environments, such restricted areas and public roads, leading to complex technical choices and parallel certification/homologation procedures. SafeCLAI addresses this challenge by developing a framework for a generic safety layer in the control of autonomous vehicles that can be re-used in different applications across sectors. This is done by extensive consolidation and application of cross-sectoral knowledge and experience – including analysis of related standards and procedures. The framework promises shorter development times and enables more efficient assessment procedures. SafeCLAI will focus on low-speed applications since they are most wanted and technically best feasible. Nevertheless, higher speed aspects will be considered to allow for future extension. SafeCLAI will practically validate (parts) of the foreseen safety layer and publish the foreseen framework as a baseline for future R&D, allowing coverage of broader design domains. SafeCLAI will disseminate the results in the Dutch arena of autonomous vehicle development and application, and also integrate the project learnings into educational modules.