The Learning Technology Research Institute (LTRI) and the Association for Learning Technology (ALT) are two organisations within the UK that focus on ICT in the field of learning and teaching. Chapter of report on the Exchange Study Trip 2002, organised by SURF from the 21st till the 26th of April 2002.
Verslag van een onderzoek naar strategieën van curriculumimplementatie voor ICT onderwijs in het Nederlandse hsao.
This paper examines how the learning environment in primary education can be enhanced by stimulating the use of innovative ICT applications. In particular, this discussion focuses on mind tools as a means of leveraging ICT for the development of cognitive skills. The stimulating effect of mind tools on the thinking skills and thinking attitudes of students is examined. The various types of mind tools and a number of specific examples are closely examined. We consider how mind tools can contribute to the establishment of an ICT-rich learning environment within the domain of technology education in primary schools. We illustrate two specific applications of such mind tools and discuss how these contribute to the development of thinking skills.
Due to the existing pressure for a more rational use of the water, many public managers and industries have to re-think/adapt their processes towards a more circular approach. Such pressure is even more critical in the Rio Doce region, Minas Gerais, due to the large environmental accident occurred in 2015. Cenibra (pulp mill) is an example of such industries due to the fact that it is situated in the river basin and that it has a water demanding process. The current proposal is meant as an academic and engineering study to propose possible solutions to decrease the total water consumption of the mill and, thus, decrease the total stress on the Rio Doce basin. The work will be divided in three working packages, namely: (i) evaluation (modelling) of the mill process and water balance (ii) application and operation of a pilot scale wastewater treatment plant (iii) analysis of the impacts caused by the improvement of the process. The second work package will also be conducted (in parallel) with a lab scale setup in The Netherlands to allow fast adjustments and broaden evaluation of the setup/process performance. The actions will focus on reducing the mill total water consumption in 20%.
Production processes can be made ‘smarter’ by exploiting the data streams that are generated by the machines that are used in production. In particular these data streams can be mined to build a model of the production process as it was really executed – as opposed to how it was envisioned. This model can subsequently be analyzed and stress-tested to explore possible causes of production prob-lems and to analyze what-if scenarios, without disrupting the production process itself. It has been shown that such models can successfully be used to diagnose possible causes of production problems, including scrap products and machine defects. Ideally, they can even be used to model and analyze production processes that have not been implemented yet, based on data from existing production pro-cesses and techniques from artificial intelligence that can predict how the new process is likely to be-have in practice in terms of data that its machines generate. This is especially important in mass cus-tomization processes, where the process to create each product may be unique, and can only feasibly be tested using model- and data-driven techniques like the one proposed in this project. Against this background, the goal of this project is to develop a method and toolkit for mining, mod-elling and analyzing production processes, using the time series data that is generated by machines, to: (i) analyze the performance of an existing production process; (ii) diagnose causes of production prob-lems; and (iii) certify that a new – not yet implemented – production process leads to high-quality products. The method is developed by researching and combining techniques from the area of Artificial Intelli-gence with techniques from Operations Research. In particular, it uses: process mining to relate time series data to production processes; queueing networks to determine likely paths through the produc-tion processes and detect anomalies that may be the cause of production problems; and generative adversarial networks to generate likely future production scenarios and sample scenarios of production problems for diagnostic purposes. The techniques will be evaluated and adapted in implementations at the partners from industry, using a design science approach. In particular, implementations of the method are made for: explaining production problems; explaining machine defects; and certifying the correct operation of new production processes.
In recent years, disasters are increasing in numbers, location, intensity and impact; they have become more unpredictable due to climate change, raising questions about disaster preparedness and management. Attempts by government entities at limiting the impact of disasters are insufficient, awareness and action are urgently needed at the citizen level to create awareness, develop capacity, facilitate implementation of management plans and to coordinate local action at times of uncertainty. We need a cultural and behavioral change to create resilient citizens, communities, and environments. To develop and maintain new ways of thinking has to start by anticipating long-term bottom-up resilience and collaborations. We propose to develop a serious game on a physical tabletop that allows individuals and communities to work with a moderator and to simulate disasters and individual and collective action in their locality, to mimic real-world scenarios using game mechanics and to train trainers. Two companies–Stratsims, a company specialized in game development, and Society College, an organization that aims to strengthen society, combine their expertise as changemakers. They work with Professor Carola Hein (TU Delft), who has developed knowledge about questions of disaster and rebuilding worldwide and the conditions for meaningful and long-term disaster preparedness. The partners have already reached out to relevant communities in Amsterdam and the Netherlands, including UNUN, a network of Ukrainians in the Netherlands. Jaap de Goede, an experienced strategy simulation expert, will lead outreach activities in diverse communities to train trainers and moderate workshops. This game will be highly relevant for citizens to help grow awareness and capacity for preparing for and coping with disasters in a bottom-up fashion. The toolkit will be available for download and printing open access, and for purchase. The team will offer training and facilitate workshops working with local communities to initiate bottom-up change in policy making and planning.