The improvement of passive fire protection of storage vessels is a key factor to enhance safety among the LPG distribution chain. A thermal and mechanical model based on finite elements simulations was developed to assess the behaviour of full size tanks used for LPG storage and transportation in fire engulfment scenarios. The model was validated by experimental results. A specific analysis of the performance of four different reference coating materials was then carried out, also defining specific key performance indicators (KPIs) to assess design safety margins in near-miss simulations. The results confirmed the wide influence of coating application on the expected vessel time to failure due to fire engulfment. Aquite different performance of the alternative coating materialswas evidenced. General correlationswere developed among the vessel time to failure and the effective coating thickness in full engulfment scenarios, providing a preliminary assessment of the coating thickness required to prevent tank rupture for a given time lapse. The KPIs defined allowed the assessment of the available safety margins in the reference scenarios analyzed and of the robustness of thermal protection design.
MULTIFILE
This report was produced within the framework of the RAAK PRP project ‘Veiligheid op de werkvloer’. Personal protective equipment (PPE) is used on a daily basis by millions of people all over the EU, voluntarily or as a result of EU legislation. In this report we deal specifically with the textile/garment aspects of PPE. In this context we must consider the fact that PPE encompasses a huge area with hundreds of different applications of materials and systems tuned to specific needs;from a materials point of view it represents a complex area due to the large diversity of labour conditions. Textiles and clothing represent an area where PPE is an important area of attention. On a global scale it is an area of much research. Safety and comfort are becoming more and more important and these aspects must be in balance. Uncomfortable systems will not be used and put safe working at risk. Thus there is a continuous need for technological innovation to improve the effectiveness of PPE systems. Specialization and specific combinations aimed at use under well-defined conditions contributes to finding a good balance between comfort and safety. The design of products, taking into account the individual needs represent an area of intensive research: Safety directed ‘fashion design’.The ultimate goal is the development of proactive systems by which workers (but capital goods as well) are optimally protected. There is also a lot of attention for maintenance and cleaning since protective functions may deteriorate as a result of cleaning processes. Another important point is standardization because producers need directions for product development and supply of goods. In our overview we make a distinction between static and dynamic systems. Static systems provide passive protection, simply by being a part of an equipment that separates the worker from the danger zone. Dynamic systems are more ‘intelligent’ because these can react to stimuli and subsequently can take action. These dynamic systems use sensors, communication technology and actuators. From this research the following may be concluded: 1. Safety is obtained by choice of materials for a textile construction, including the use of coatings with special properties, application of specific additives and he use of special designed fibre shapes. 2. The architecture and ultimate construction and the combinations with other materials result in products that respond adequately. This is of great importance because of the balance comfort – safety. But a lot can be improved in this respect. 3. Insight in human behaviour, ambient intelligence and systems technology will lead to new routes for product development and a more active approach and higher levels of safety on the work floor. Consequently there is a lot of research going on that is aimed at improved materials and systems. Also due to the enormous research area of smart textiles a lot of development is aimed at the integration of new technology for application in PPE. This results in complex products that enhance both passive and active safety. Especially the commissioners, government and industry, must pay a lot of attention to specifying the required properties that a product should meet under the specific conditions. This has a cost aspect as well because production volumes are usually not that large if for small groups of products specific demands are defined. We expect that through the technology that is being developed in the scope of mass customization production technologies will be developed that allows production at acceptable cost, but still aimed at products that have specific properties for unique application areas. Purchasing is now being practiced through large procurements. We must than consider the fact that specification takes place on the basis of functionality. In that case we should move away from the current cost focus but the attention should shift towards the life cycle
MULTIFILE
Two large-scale diesel pool fire engulfment testswere carried out on LPG tanksprotected with intumescing materials to test the effectiveness of thermal coatings in the prevention of hot BLEVE accidental scenarios in the road and rail transport of LPG. A specific test protocol was defined to enhance reproducibility of experimental tests. The geometrical characteristics of the test tanks were selected in order to obtain shell stresses similar to those present in full-size road tankers complying to ADR standards. In order to better understand the stress distribution on the vessel and to identify underlying complicating phenomena, a finite element model was also developed to better analyze the experimental data. A non-homogeneous and time-dependent effectiveness of the fire protection given by the intumescing coating was evidenced both by finite element simulations and by the analysis of the coating after the tests. The results of the fire tests pointed out that the coating assured an effective protection of the tanks, consistently increasing the expected time to failure. The data obtained suggest that the introduction of fire protection coatings may be a viable route to improve the safety of the LPG distribution chain.
MULTIFILE
Europa wil in 2050 volledig klimaatneutraal zijn, en zet in op waterstof als energiedrager die een hoofdrol zal spelen in die transitie. Nederlandse bedrijven die dieselaggregaten produceren zetten voor de volledige reductie van de CO2-emissie van hun producten nu voornamelijk in op het vervangen van fossiele door zogenaamde groene diesel. Recent zijn diverse studies verschenen die aantonen dat de ontwikkeling en inzet van waterstofmotoren, zeker voor toepassingen in wegtransport, zowel technisch als economisch zinvol is. Dergelijk productontwikkeling zou ook bij generatorsets een versnelling van de energietransitie mogelijk maken en bovendien kunnen functioneren als een brugtechnologie tot het ogenblik dat brandstofcellen voldoende goedkoop en duurzaam zijn geworden. Doel van dit project is om de economische en technische haalbaarheid van een dergelijke productontwikkeling in kaart te brengen. Bijzonder is daarbij dat het hierbij gaat om een retrofit van bestaande motoren die massaal geproduceerd worden voor automotive doeleinden. Omdat voorlopig gebruik zal worden gemaakt van componenten die ontwikkeld zijn voor de huidige aardgasmotoren voorziet het project ook in versneld duurproefonderzoek van deze componenten. In dit project wordt samengewerkt tussen Fontys Hogeschool Engineering, NPS Diesel B.V., H2Trac B.V., Prins Autogassystemen B.V. en TNO.
IGNITION (European Digital Literacy Coalition for Inclusion, Collaboration and Inclusion in Higher Education) is an Erasmus funded Cooperation Partnership and its main goal is to enhance digital literacy and inclusion for teachers, faculty staff, students and life-long learners in external organizations that partners collaborate with. IGNITION aims to increase awareness of and competence development in digital literacy of all people involved in digital transformation of higher education institutions through the project’s outcomes: A Common Digital Agenda that gives direction to our activitiesan Online Self-assessment tool to learn from and with each other; the Digital Challenge Innovation Learning Lab (DChiLL),the transnational Community of Practice for Digital Literacy and Inclusion (CoP), and the Toolkit for engaging with external stakeholders through digital mediaPartners are Hanze University of Applied Sciences (The Netherlands), South East Technological University (Ireland), Hochschule Bremen (Germany), Polytechnic Institute of Braganza (Portugal).
The drive to reduce the carbon intensity of the energy system has generated much interest in applying carbon-free fuels such as ammonia (NH3) in combustion systems. The high hydrogen density and well-established production processes make NH3 a valuable chemical energy carrier to address and sustain the energy shift toward renewable energy source integration. However, some difficulties can be highlighted in the NH3 practical application. The combustion of NH3 is prone to producing harmful nitric oxides. In addition, NH3 has lower reactivity than most hydrocarbon fuels, which makes ignition challenging. Also, admixing NH3 with highly reactive fuels such as DME will facilitate ignition. The partnerships of this proposal are very interested in applying renewable NH3 as fuel in combined heat and power engines, and this research proposal suggests simulating a dual-fuel engine with NH3 as its primary fuel. The results of this research will help determine the optimum operating conditions for performing an experimental study.