International education is a relatively new field and until recently, there was no formal education to prepare practitioners. This means that people working in international education are a colourful and diverse group, coming from a wide range of disciplines, which definitely adds to the attraction of the field. I call international education a field rather than a discipline since it is composed of a variety of established disciplines, such as languages, educational sciences, psychology, business, anthropology, history and even, in my case, classical archaeology. For this lecture, I have chosen to return to my original discipline and discuss global learning as the stages of an archaeological excavation. Cutting though the subsequent layers represents a history of international education but also my own professional history. By digging deeper down, layer after layer, I hope to uncover the essence of global learning in order to make its benefits available for all our students. This lecture consists of four sections. In the first section, I want to go back to the time when archaeology was a new discipline and see what we can learn from the research conducted at that time. In the second section I will reveal the layers of internationalisation and global learning until we come to the layer that we are currently exploring. In the third section, I will look at some of the factors and trends that will have an impact on global learning in the years to come. This shows that circumstances are quite different from when the excavation started and that global education is therefore dynamic. Finally, I will discuss what research the Research Group Global Learning will conduct, how and with whom, in the coming years.
Digital Twins of the Ocean (DTO) are a rapidly emerging topic that has attracted significant interest from scientists in recent years. The initiative, strongly driven by the EU, aims to create a digital replica of the ocean to better understand and manage marine environments. The Iliad project, funded under the EU Green Deal call, is developing a framework to support multiple interoperable DTO using a federated systems-of-systems approach across various fields of applications and ocean areas, called pilots. This paper presents the results of a Water Quality DTO pilot located in the Trondheim fjord in Norway. This paper details the building blocks of DTO, specific to this environmental monitoring pilot. A crucial aspect of any DTO is data, which can be sourced internally, externally, or through a hybrid approach utilizing both. To realistically twin ocean processes, the Water Quality pilot acquires data from both surface and benthic observatories, as well as from mobile sensor platforms for on-demand data collection. Data ingested into an InfluxDB are made available to users via an API or an interface for interacting with the DTO and setting up alerts or events to support ’what-if’ scenarios. Grafana, an interactive visualization application, is used to visualize and interact with not only time-series data but also more complex data such as video streams, maps, and embedded applications. An additional visualization approach leverages game technology based on Unity and Cesium, utilizing their advanced rendering capabilities and physical computations to integrate and dynamically render real-time data from the pilot and diverse sources. This paper includes two case studies that illustrate the use of particle sensors to detect microplastics and monitor algae blooms in the fjord. Numerical models for particle fate and transport, OpenDrift and DREAM, are used to forecast the evolution of these events, simulating the distribution of observed plankton and microplastics during the forecasting period.
ILIAD builds on the assets resulting from two decades of investments in policies and infrastructures for the blue economy and aims at establishing an interoperable, data-intensive, and cost-effective Digital Twin of the Ocean (DTO). It capitalizes on the explosion of new data provided by many different earth sources, advanced computing infrastructures (cloud computing, HPC, Internet of Things, Big Data, social networking, and more) in an inclusive, virtual/augmented, and engaging fashion to address all Earth Data challenges. It will contribute towards a sustainable ocean economy as defined by the Centre for the Fourth Industrial Revolution and the Ocean, a hub for global, multi-stakeholder co-operation.