ObjectivesTo assess if nutritional interventions informed by indirect calorimetry (IC), compared to predictive equations, show greater improvements in achieving weight goals, muscle mass, strength, physical and functional performance.DesignQuasi-experimental study.Setting and ParticipantsGeriatric rehabilitation inpatients referred to dietitian.Intervention and MeasurementsPatients were allocated based on admission ward to either the IC or equation (EQ) group. Measured resting metabolic rate (RMR) by IC was communicated to the treating dietitian for the IC group but concealed for the EQ group. Achieving weight goals was determined by comparing individualised weight goals with weight changes from inclusion to discharge (weight gain/loss: >2% change, maintenance: ≤2%). Muscle mass, strength, physical and functional performance were assessed at admission and discharge. Food intake was assessed twice over three-days at inclusion and before discharge using plate waste observation.ResultsFifty-three patients were included (IC n=22; EQ n=31; age: 84.3±8.4 years). The measured RMR was lower than the estimated RMR within both groups [mean difference IC −282 (95%CI −490;−203), EQ −273 (−381;−42) kcal/day)] and comparable between-groups (median IC 1271 [interquartile range 1111;1446] versus EQ 1302 [1135;1397] kcal/day, p=0.800). Energy targets in the IC group were lower than the EQ group [mean difference −317 (95%CI −479;−155) kcal/day]. There were no between-group differences in energy intake, achieving weight goals, changes in muscle mass, strength, physical and functional performance.ConclusionsIn geriatric rehabilitation inpatients, nutritional interventions informed by IC compared to predictive equations showed no greater improvement in achieving weight goals, muscle mass, strength, physical and functional performance. IC facilitates more accurate determination of energy targets in this population. However, evidence for the potential benefits of its use in nutrition interventions was limited by a lack of agreement between patients’ energy intake and energy targets.
MULTIFILE
Rationale: It is well established that resting energy expenditure (REE) decreases with age. Data derived from indirect calorimetry (IC) are still limited with respect to the number of high aged individuals, BMI groups and health conditions. Therefore, IC generated REE of the BASAROT sample and those calculated according to the Harris-Benedict (HB) equation were used to re-evaluate the proposed association between REE and age. Methods: The IC-BASAROT sample combines the result of IC performed in 2622 individuals from 10 centers (7 Germany, 2 Italy, 1 Netherlands) done under strictly standardized conditions (e.g. at least 8h of fasting) in free-living, mostly healthy adults aged 18 to 100 years including all BMI ranges. IC was performed by canopy technique (Cosmed Quark RMR/Sensor Medics Vmax29) in 96.5% of cases and by face mask (Cosmed Fitmate) in 3.5%. Weight was measured by calibrated scales and height was determined to the nearest of 1mm. Results: REE in the total sample (BMI: 26.9±9.1 kg/m², 43.7±17.6 y) correlated more positively with body weight than with BMI (r=0.768; p<0.001 vs. r=0.571; p<0.001). Gender+body weight explained 75% of REE variance, gender+BMI 69% and gender+age only 28%. To reduce confounding by body weight we performed age-related analysis in the subgroup of women weighing 50-79 kg (n=780, BMI: 23.4±3.4 kg/m², 41.4±18.5 y) and men weighing 60-89 kg (n=500, BMI: 24.9±3.0 kg/m², 47.5±19.3 y) and compared results with REEHB (tab. 1). IC results from 18 to 100 y showed an approximately 50% lower decrease in REE than HB in women (-129 kcal/d vs. - 257 kcal/d) and in men (-200 kcal/d vs. -406 kcal/d, tab. 1). REEIC (n=1280) did not correlate with age (r=-0.042; p=0.132). In line, we observed a significant overestimation of REE by HB up to 39 y in both sexes and an underestimation in men 60 y of age and older. Conclusion: Age-related decline in REE appears to be lower than expected and might due to changes in body composition both in the younger and older generation. No indication of the often proposed systematic overestimation of HB in women was seen. Overall, findings should be considered in future models for estimating REE.
LINK
Background: When the resting energy expenditure (REE) of overweight and obese adolescents cannot be measured by indirect calorimetry, it has to be predicted with an equation. Objective: The aim of this study was to examine the validity of published equations for REE compared with indirect calorimetry in overweight and obese adolescents. Design: Predictive equations based on weight, height, sex, age, fatfree mass (FFM), and fat mass were compared with measured REE. REE was measured by indirect calorimetry, and body composition was measured by dual-energy X-ray absorptiometry. The accuracy of the REE equations was evaluated on the basis of the percentage of adolescents predicted within 10% of REE measured, the mean percentage difference between predicted and measured values (bias), and the root mean squared prediction error (RMSE). Results: Forty-three predictive equations (of which 12 were based on FFM) were included. Validation was based on 70 girls and 51 boys with a mean age of 14.5 y and a mean (6SD) body mass index SD score of 2.93 6 0.45. The percentage of adolescents with accurate predictions ranged from 74% to 12% depending on the equation used. The most accurate and precise equation for these adolescents was the Molnar equation (accurate predictions: 74%; bias: –1.2%; RMSE: 174 kcal/d). The often-used Schofield-weight equation for age 10–18 y was not accurate (accurate predictions: 50%; bias: +10.7%; RMSE: 276 kcal/d). Conclusions: Indirect calorimetry remains the method of choice for REE in overweight and obese adolescents. However, the sex-specific Molnar REE prediction equation appears to be the most accurate for overweight and obese adolescents aged 12–18 y. This trial was registered at www.trialregister.nl with the Netherlands Trial Register as ISRCTN27626398.
DOCUMENT