Een aantal studieonderdelen van de Fontys-opleiding Technische Informatica, met name op het gebied van de Industriële Automatisering worden nader toegelicht. In het begin van de opleiding zijn er oriënterende eenheden, zoals de module Productiesystemen (PRS) en het project Industriële Automatisering (ProIA). Bij PRS wordt het onderwijs uitgevoerd in de vorm van theorie- en practicumopdrachten, respectievelijk individueel en in groepen. Bij ProIA wordt een praktijkproject nagebootst. In het vierde jaar zijn er voor studenten die de afstudeervariant Industriële Automatisering hebben gekozen specialisatiemodulen en een project op dit gebied. Er wordt vooral aandacht besteed aan de onderwijsvormen, die in het eerste deel van de opleiding worden toegepast. In de loop der jaren is een lesmodule op gebied van Industriële Automatisering "uitgeëvolueerd" tot zijn huidige vorm. Sinds IA een afstudeervariant is geworden binnen de opleiding Technische Informatica zijn daar nog een aantal onderwijsvormen bij gekomen met name in de vorm van practica en projecten op dit gebied.
DOCUMENT
Al jaren lang klaagt de industrie steen en been over de teloorgang van het vakgebied Industriële Automatisering. In het algemeen verstaat men hieronder de softwarematige (maar deels ook hardwarematige) oplossingen die nodig zijn voor het besturen en monitoren van industriële processen. Te denken valt aan besturing van robots en transportsystemen, al of niet met gebruikmaking van PLC's en het bewaken van processen met SCADA-systemen. Daarnaast zijn er natuurlijk nog talloze andere voorbeelden aan te dragen. Het lijkt moeilijk te zijn om in deze gebieden voldoende hoog opgeleide mensen te vinden die de processen kunnen overzien.
DOCUMENT
Hoe kan Digital Twin-technologie de Nederlandse maakindustrie helpen om efficiënt energiezuinig en circulair te werken? Met praktijkgericht onderzoek helpt het lectoraat Industriële Digital Twins van de Hogeschool van Amsterdam (HvA) bedrijven om CO2-neutraal te worden en daarmee internaal competitief te blijven.
DOCUMENT
De recente doorbraak van 3D-siliconenprinten, is de productie-industrie flink aan het veranderen. In plaats van alleen kunststof, metaal en beton, is nu ook 3D-siliconenprinten mogelijk, iets wat voorheen lastig was door de ingewikkelde eigenschappen van dat materiaal. Dit geeft nieuwe kansen en mogelijkheden, zo ook in de (maak)industrie. Royal Kaak, een grote producent van bakkerijmachines in Terborg, gebruikt in industriële bakkerijen robotica en pick-&-place systemen om deegproducten efficiënt te verwerken. De ontwikkeling hiervan is essentieel omdat, zeker in Nederland, een gebrek aan goede werkkrachten ontstaat. Automatisering kan ervoor zorgen dat productie in Nederland blijft. Hierbij worden siliconen grippers gebruikt, maar de commercieel beschikbare grippers zijn in slechts een aantal vormen en maten verkrijgbaar en voldoen vaak niet aan de specifieke eisen voor verschillende deegproducten. Eerdere experimenten met andere 3D-printtechnieken leverden te stugge grippers met een korte levensduur op. Siliconen 3D-printen biedt de mogelijkheid om zachte materialen in vrije vormen te maken en daarmee flexibele grippers. Royal Kaak ziet veel potentie in deze technologie voor niet-standaard grippers. Voor grote oplages kunnen ze dan kort alle iteraties middels de printer testen, waarna een specifieke mal besteld kan worden bij een siliconengietbedrijf. Voor kleinere oplages en speciale producten blijft 3D-printen de logische keuze. Naast Saxion en Royal Kaak sluit ook Oceanz aan in het onderzoeksteam. Oceanz is bekend om zijn 3D-print productiemogelijkheden, onder andere ook al voor de voedsel- en medische industrie. Oceanz werkt momenteel voornamelijk met harde kunststoffen, die ongeschikt zijn als soft-robotic gripper. Daarom is Oceanz erg geïnteresseerd in de voordelen die 3D-siliconenprinten kan brengen. Als er succes in dit project geboekt wordt, betekent dit een duurzame doorzetting van de productiemethode en een goede business case voor beide partners. De bevindingen zullen worden gedeeld in publicaties en mogelijk op conferenties. Het opgebouwde netwerk zal worden ingezet voor toekomstige samenwerking en onderzoek.
Automatiseren en robotiseren bij maakbedrijven is noodzaak, juist bij mkb-ers. Mkb-ers willen dit ook, maar weten niet hoe en waar te beginnen. Complicerende factoren zijn: Een vertaalslag is nodig om te komen tot een technische implementatie in de bedrijfscontext van de mkb-er. Er is geen one-size-fits-all oplossing. Samenwerking met andere partijen is nodig, waarbij de mkb-er zelf de meeste kennis van de specifieke productieprocessen heeft en deze moet inbrengen. Veel mkb-ers produceren kleine series met veel variatie. Het toekomstige productportfolio (voor veelal externe klanten) en productiecapaciteit zijn moeilijk in te schatten. Dit vraagt flexibiliteit voor toekomstige product- en capaciteitsvariatie. De maakindustrie heeft kapitaalintensieve productiefaciliteiten. Herinrichten van de fabriek naar ‘smart industry’ mogelijkheden kan alleen stapsgewijs met een lange termijn doel aan de horizon. De uitdaging is met een juiste combinatie van bestaande oplossingen, State of the Art technologie en componenten te komen tot een processpecifieke oplossing. Samen met kennisinstellingen, machinebouwers en/of industriële dienstverleners moet de mkb-er stappen zetten om naar een lange termijn doel toe te werken. Vanuit de praktijkvraag van bedrijven is de volgende onderzoeksvraag onderkend: Op welke wijze kan een productiehandeling of -bewerking door industriële robots stapsgewijs geautomatiseerd, gedigitaliseerd maar ook flexibel én op een integrale wijze gerealiseerd worden, uitgaande van een bestaande productiefaciliteit? In dit project is het doel methoden te ontwikkelen voor de mkb-er om technische realisatie van automatiseringsoplossingen succesvol uit te voeren. Niet om de mkb-er op te leiden tot ‘machinebouwer’, maar om deze te voorzien van voldoende kennis, werkwijzen en tools om met partners een automatiseringsoplossing te kunnen plannen, realiseren en in bedrijf te houden. Het beoogde projectresultaat is een gevalideerde tool om mkb-bedrijven te helpen stappen te maken in productieautomatisering en -robotisering. Een demonstrator wordt gerealiseerd om het resultaat aan te tonen en bedrijven mee te nemen in hun mogelijke toekomst.
De transitie naar een gerobotiseerde industriële omgeving is in volle gang. Robots zijn zich aan het ontwikkelen tot collaboratieve robots (co-bots) en worden zo meer een collega dan een geïsoleerde machine in een kooi. Een goede co-bot-mens-samenwerking heeft positieve effecten op de werkbeleving, resulteert in minder stress, verzuim, minder ‘bijna-ongelukken’ en leidt tot hogere productiviteit en kwaliteit op de werkvloer. Onderling vertrouwen tussen medewerker en co-bot speelt een belangrijke rol in een goede samenwerking en voor effectieve teamprestaties. De interactie tussen medewerker en co-bot dient daartoe zo natuurlijk mogelijk, voorspelbaar en intuïtief te verlopen. Op dit terrein valt nog veel winst te boeken in het industriële MKB. Co-bots moeten leren anticiperen op wat in de directe omgeving komen gaat, zodat de medewerker nimmer in een onveilige situatie verkeert en zich comfortabel voelt in de samenwerking met de co-bot. Van de andere kant moeten medewerkers leren begrijpen hoe co-bots werken en wat ze van hen kunnen verwachten. Ambitie van het project “Close Encounters with Co-bots” is het verbeteren van de effectieve samenwerking tussen medewerker en co-bot op de industriële werkvloer en daarbij vertrouwen en beleefde veiligheid te borgen voor de medewerker. In het project wordt daartoe gewerkt aan begrip van de co-bot in de mens, begrip van de mens in de co-bot, het bouwen aan technische oplossingen voor effectieve communicatie, en prototyping en testing in relevante praktijkomgevingen in het MKB. Het bedrijfsleven kan met de resultaten van het project versneld de door hen gewenste leercurve doorlopen om samenwerkende industriële mens-co-bot-systemen substantieel te laten bijdragen aan operationele winst in economisch, (productie)technisch en sociaal opzicht. Het project is een interdisciplinair samenwerking tussen de vakgebieden psychologie, mechatronica en ICT binnen Fontys Hogescholen en Saxion Hogeschool. De negen participerende (MKB) bedrijven zijn actief als industrieel productiebedrijf, in robotica ontwikkeling, als systeem- en robotleverancier, in productieautomatisering en in de sociale werkvoorziening. Daarnaast zijn kennisinstelling TU/e, coöperatie Brainport Industries en samenwerkingsverband Holland Robotics nauw betrokken. In het project zal bestaande kennis toepasbaar worden gemaakt en zal nieuwe kennis worden ontwikkeld t.b.v. een natuurlijke, voorspelbare en intuïtieve samenwerking tussen medewerker en co-bot op de industriële werkvloer. Verder zal verankering van kennis en kunde in onderwijs en lectoraten plaatsvinden en een vergroting van de kwaliteit van docenten en afstudeerders. Er zullen circa 17 docent-onderzoekers van de hogescholen en circa 100 studenten betrokken worden, die in de vorm van studentenprojecten, stages en afstudeeronderzoeken werken aan interessante vraagstukken direct uit de beroepspraktijk.