In recent years, a step change has been seen in the rate of adoption of Industry 4.0 technologies by manufacturers and industrial organizations alike. This article discusses the current state of the art in the adoption of Industry 4.0 technologies within the construction industry. Increasing complexity in onsite construction projects coupled with the need for higher productivity is leading to increased interest in the potential use of Industry 4.0 technologies. This article discusses the relevance of the following key Industry 4.0 technologies to construction: data analytics and artificial intelligence, robotics and automation, building information management, sensors and wearables, digital twin, and industrial connectivity. Industrial connectivity is a key aspect as it ensures that all Industry 4.0 technologies are interconnected allowing the full benefits to be realized. This article also presents a research agenda for the adoption of Industry 4.0 technologies within the construction sector, a three-phase use of intelligent assets from the point of manufacture up to after build, and a four-staged R&D process for the implementation of smart wearables in a digital enhanced construction site.
As a logical consequence of the advancements in automation of production of composite aircraft structures, more attention is paid to the automation of maintenance. Current repair procedures involve manual labour and exposure to harmful particles (such as dust, vapours) while final quality and evidencing depends largely on the skills of repair technicians. The current study aims to automate composite repair procedures for the aviation sector with the objective to counter these disadvantages. Main research question: ‘What is required for a robot system to assist in composite repairs’This research is part of a larger, SIA-RAAK funded project FIXAR, running in three Universities of Applied Sciences in the Netherlands and a cluster of knowledge institutions and industry partners.In the repair process of aircraft structures, repair by means of scarf or lap joints is common practice. First paint layers must be removed to inspect the area and prepare for further repair. Then damaged material is removed. Material is replaced and the repair is finished and painted. Tasks within the repair process that are considered dull or harmful are sanding and material removal. Current investigation focussed on automation of these tasks.
The increasing amount of electronic waste (e-waste) urgently requires the use of innovative solutions within the circular economy models in this industry. Sorting of e-waste in a proper manner are essential for the recovery of valuable materials and minimizing environmental problems. The conventional e-waste sorting models are time-consuming processes, which involve laborious manual classification of complex and diverse electronic components. Moreover, the sector is lacking in skilled labor, thus making automation in sorting procedures is an urgent necessity. The project “AdapSort: Adaptive AI for Sorting E-Waste” aims to develop an adaptable AI-based system for optimal and efficient e-waste sorting. The project combines deep learning object detection algorithms with open-world vision-language models to enable adaptive AI models that incorporate operator feedback as part of a continuous learning process. The project initiates with problem analysis, including use case definition, requirement specification, and collection of labeled image data. AI models will be trained and deployed on edge devices for real-time sorting and scalability. Then, the feasibility of developing adaptive AI models that capture the state-of-the-art open-world vision-language models will be investigated. The human-in-the-loop learning is an important feature of this phase, wherein the user is enabled to provide ongoing feedback about how to refine the model further. An interface will be constructed to enable human intervention to facilitate real-time improvement of classification accuracy and sorting of different items. Finally, the project will deliver a proof of concept for the AI-based sorter, validated through selected use cases in collaboration with industrial partners. By integrating AI with human feedback, this project aims to facilitate e-waste management and serve as a foundation for larger projects.
Automation is a key enabler for the required productivity improvement in the agrifood sector. After years of GPS-steering systems in tractors, mobile robots start to enter the market. Localization is one of the core functions for these robots to operate properly on fields and in orchards. GNSS (Global Navigation Satellite System) solutions like GPS provide cm-precision performance in open sky, but buildings, poles and biomaterial may reduce system performance. On top, certain areas do not provide a dependable grid communication link for the necessary GPS corrections and geopolitics lead to jamming activities. Other means for localization are required for robust operation. VSLAM (Visual Simultaneous Localization And Mapping) is a complex software approach that imitates the way we as humans learn to find our ways in unknown environments. VSLAM technology uses camera input to detect features in the environment, position itself in that 3D environment while concurrently creating a map that is stored and compared for future encounters, allowing the robot to recognize known environments and continue building a complete, consistent map of the environment covered by its movement. The technology also allows continuous updating of the map in environments that evolve over time, which is a specific advantage for agrifood use cases with growing crops and trees. The technology is however relatively new, as required computational power only recently became available in tolerable cost range and it is not well-explored for industrialized applications in fields and orchards. Orientate investigates the merits of open-source SLAM algorithms on fields - with Pixelfarming Robotics and RapAgra - and in an orchard - with Hillbird - preceded by simulations and initial application on a HAN test vehicle driving in different terrains. The project learnings will be captured in educational material elaborating on VSLAM technology and its application potential in agrifood.
The automobile industry is presently going through a rapid transformation towards autonomous driving. Nearly all vehicle manufacturers (such as Mercedes Benz, Tesla, BMW) have commercial products, promising some level of vehicle automation. Even though the safe and reliable introduction of technology depends on the quality standards and certification process, but the focus is primarily on the introduction of (uncertified) technology and not on developing knowledge for certification. Both industry and governments see the lack of knowledge about certification, which can ensure the safety of autonomous technology and thus will guarantee the safety of the driver, passenger, and environment. HAN-AR recognized the lack of knowledge and the need for novel certification methodology for emerging vehicle technology and initiated the PRAUTOCOL project together with its SME partners. The PRAUTOCOL project investigated certification methodology for two use-cases: certification for automated highway overtaking pilot; and certification for automatic valet parking. The PRAUTOCOL research is conducted in two parallel streams: certification of the driver by human factors experts and certification of vehicle by technology experts. The results from both streams are published and presented in respective but limited target groups. Also, an overview of the PRAUTOCOL certification methodology is missing, which can enable its translation to different use-cases of automated technology (other than the used ones). Therefore, to realize a better pass-through of PRAUTOCOL's results to a broader audience, the top-up is required. Firstly, to write a (peer-reviewed) Open Access article, focusing on the application and translation of PRAUTOCOL's methodology to other automated technology use-cases. Secondly, to write a journal article, focusing on the validation of automatic highway overtaking system using naturalistic driving data. Thirdly, to organize a workshop to present PRAUTOCOL's results (valorization) to industrial, research, and government representatives and to discuss a follow-up initiative.